The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding...The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding chairs accounts for up to 10%of the total failure number in turnout.However,there is little research carried out in the existing literature to diagnose the deterioration states of the sliding chairs.To fill out this gap,by utilizing the images containing the sliding chairs,we propose an improved You Only Look Once version 7(YOLOv7)to identify the state of the sliding chairs.Specifically,to meet the challenge brought by the small inter-class differences among the sliding chair states,we first integrate the Convolutional Block Attention Module(CBAM)into the YOLOv7 backbone to screen the information conducive to state identification.Then,an extra detector for a small object is customized into the YOLOv7 network in order to detect the small-scale sliding chairs in images.Meanwhile,we revise the localization loss in the objective function as the Efficient Intersection over Union(EIoU)to optimize the design of the aspect ratio,which helps the localization of the sliding chairs.Next,to address the issue caused by the varying scales of the sliding chairs,we employ K-means++to optimize the priori selection of the initial anchor boxes.Finally,based on the images collected from real-world turnouts,the proposed method is verified and the results show that our method outperforms the basic YOLOv7 in the state identification of the sliding chairs with 4%improvements in terms of both mean Average Precision@0.5(mAP@0.5)and F1-score.展开更多
The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measu...The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measurement product,an objective algorithm for identifying heavy-precipitation NCCV(HPCV)events was designed,and the climatological features of 164 HPCV events from 2001 to 2019 were investigated.The number of HPCV events showed an upward linear trend,with the highest frequency of occurrence in summer.The most active region of HPCV samples was the Northeast China Plain between 40°–55°N.Most HPCV events lasted 3–5 days and had radii ranging from 250 to 1000 km.The duration of HPCV events with larger sizes was longer.About half of the HPCV events moved into(moved out of)the definition region(35°–60°N,115°–145°E),and half initiated(dissipated)within the region.The initial position was close to the western boundary of the definition region,and the final position was mainly near the eastern boundary.The locations associated with the precipitation were mostly concentrated within 2000 km southeast of the HPCV systems,and they were farther from the center in the cold season than in the warm season.展开更多
Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aqu...Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements.展开更多
A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local o...A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local optima. Optimal Identification of unknown groundwater pollution sources poses similar challenges. Optimization based methodology is often applied to identify the unknown source characteristics such as location and flux release history over time, in a polluted aquifer. Optimization based models for identification of these characteristics of unknown ground-water pollution sources rely on comparing the simulated effects of candidate solutions to the observed effects in terms of pollutant concentration at specified sparse spatiotemporal locations. The optimization model minimizes the difference between the observed pollutant concentration measurements and simulated pollutant concentration measurements. This essentially constitutes the objective function of the optimization model. However, the mathematical formulation of the objective function can significantly affect the accuracy of the results by altering the response contour of the solution space. In this study, two separate mathematical formulations of the objective function are compared for accuracy, by incorporating different scenarios of unknown groundwater pollution source identification problem. Simulated Annealing (SA) is used as the solution algorithm for the optimization model. Different mathematical formulations of the objective function for minimizing the difference between the observed and simulated pollutant concentration measurements show different levels of accuracy in source identification results. These evaluation results demonstrate the impact of objective function formulation on the optimal identification, and provide a basis for choosing an appropriate mathematical formulation for unknown pollution source identification in contaminated aquifers.展开更多
Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identi...Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.展开更多
Hyperspectral remote sensing has become one of the research frontiers in ground object identification and classification. On the basis of reviewing the application of hyperspectral remote sensing in identification and...Hyperspectral remote sensing has become one of the research frontiers in ground object identification and classification. On the basis of reviewing the application of hyperspectral remote sensing in identification and classification of ground objects at home and abroad. The research results of identification and classification of forest tree species, grassland and urban land features were summarized. Then the researches of classification methods were summarized. Finally the prospects of hyperspectral remote sensing in ground object identification and classification were prospected.展开更多
In this paper, we carry out QoE (Quality of Experience) assessment to investigate influences of olfactory and auditory senses on fairness for a networked virtual 3D object identification game with haptics. In the game...In this paper, we carry out QoE (Quality of Experience) assessment to investigate influences of olfactory and auditory senses on fairness for a networked virtual 3D object identification game with haptics. In the game, two players try to identify objects which are placed in a shared 3D virtual space. In the assessment, we carry out the game in four cases. Smells and sounds are presented in the first case, only sounds are done in the second case, and only smells are done in the third case. In the last case, we present neither smell nor sound. As a result, we demonstrate that the fairness deteriorates more largely as the difference in conditions between two users becomes larger.展开更多
Risk management of projects is about the real time ev aluation and making of decisions proactively in order to maximize the probabilit y of achieving or surpassing the targets set for project objectives. Project objec...Risk management of projects is about the real time ev aluation and making of decisions proactively in order to maximize the probabilit y of achieving or surpassing the targets set for project objectives. Project objective generally includes three elements: time, cost, quality. Risk occurrin g in the projects will affect these three factors to some various degrees in the end. There are different emphases in each stage and integrated balanced goals b etween the three factors. A large complex engineering project generally consists of several stages each of which has variable objective combinations leading to variable important risks. In order to achieve strategic goals on the schedule under the restriction of lim ited resources, the paper gives the analysis of the so-called risk identificati on-assessment process on the basis of objective orientation. In this paper the set of involved mostly hazards is presented in terms of given objective weight v ector, and so is the model of risk ranking .By reducing the range of risk factor s step by step, risk manager could pay more attention to important ventures and effectively control of them. According to different objective combination at different stages, primary risk f actor sets at different stages are given. With the probability and their various effects to project objectives, evaluation of these sets is made aiming to r educing of the scope of risks and providing decision maker with a better decisio ns support. Successful projects are those, which focus on the relevant business objectives t hroughout the whole process and seek to information integration across project l ife cycle. This paper also introduces the idea of real time process of risk iden tification-assessment and presents a flow chart as a demonstration.展开更多
This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engin...This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied;it exploits a Particle Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure (NRSMP);the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four engineering constants of the two-dimensional elasticity are the most influent.展开更多
This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are l...This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are limited. The principle of this method is, under the condition of known typical pulse, step and slope signal response and model structure, to give algorithm of model parameters of identified continuous system by least square mode through derivation. The method is applied to the identification of heat exchange process for a consumer substation, and identification result obtained is compared with that of other conventional methods. After the comparison the result shows that identification accuracy is improved obviously. In addition to the good identification accuracy, this method has the characteristics such as it can identify directly continuous system model, pure lagging time, and is not sensitive to data length in the identification process. All these characteristics show that this method is simple, easy to implement and has good practicability.展开更多
According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis f...According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.展开更多
Object identification and three-dimensional reconstruction techniques are always attractive research interests in machine vision,virtual reality,augmented reality,and biomedical engineering.Optical computing metasurfa...Object identification and three-dimensional reconstruction techniques are always attractive research interests in machine vision,virtual reality,augmented reality,and biomedical engineering.Optical computing metasurface,as a two-dimensional artificial design component,has displayed the supernormal character of controlling phase,amplitude,polarization,and frequency distributions of the light beam,capable of performing mathematical operations on the input light field.Here,we propose and demonstrate an all-optical object identification technique based on optical computing metasurface,and apply it to 3D reconstruction.Unlike traditional mechanisms,this scheme reduces memory consumption in the processing of the contour surface extraction.The identification and reconstruction of experimental results from high-contrast and low-contrast objects agree well with the real objects.The exploration of the all-optical object identification and 3D reconstruction techniques provides potential applications of high efficiencies,low consumption,and compact systems.展开更多
Especially in recent years, deep learning has become a very effective tool for object identification. However, in general, the automatic object identification tends not to work well on ambiguous, amorphous objects suc...Especially in recent years, deep learning has become a very effective tool for object identification. However, in general, the automatic object identification tends not to work well on ambiguous, amorphous objects such as vegetation. In this study, we developed a simple but effective approach to identify ambiguous objects and applied the method to several moss species. The technique called chopped picture method, where teacher images are systematically dissected into numerous small squares. As a result, the model correctly classified 3 moss species and “non-moss” objects in test images with accuracy more than 90%. Using this approach will help progress in computer vision studies for various ambiguous objects.展开更多
The present study identifies wintertime cold fronts in Eurasia from gridded datasets using a new objective two-step identification scheme.The simple and classic conception of a front is adopted,where a cold front is i...The present study identifies wintertime cold fronts in Eurasia from gridded datasets using a new objective two-step identification scheme.The simple and classic conception of a front is adopted,where a cold front is identified as the warm boundary of the frontal zone with a suitable horizontal temperature gradient and cold advection.We combine the traditional thermal front parameter with temperature advection to first identify the cold frontal zone,and then its eastern and southern boundaries are objectively plotted as a cold front in Eurasia.By comparing different cold front identification methods,the results from this two-step cold front identification method and subjective analysis are more consistent,and the positions of the cold front identified with our method are more reasonable.This objective technique is also applied to a nationwide cold wave event over China.Results show that the horizontal extent and movement of the cold front are in good agreement with the related circulation and the associated cold weather.The proposed method and results in this study may shed light on the rapid identification of cold fronts in operational weather analysis and facilitate further research on the long-term activity characteristics of continental cold fronts.展开更多
干扰识别是无线电监测和通信抗干扰的关键环节。针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)宽带传输系统中潜在的干扰问题,提出了一种基于目标检测网络的干扰识别方法。核心思想是将传输频带中的多干扰识别问...干扰识别是无线电监测和通信抗干扰的关键环节。针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)宽带传输系统中潜在的干扰问题,提出了一种基于目标检测网络的干扰识别方法。核心思想是将传输频带中的多干扰识别问题转化为时频谱图中的多目标检测问题,进而利用改进的目标检测算法进行识别。实验结果表明,该方法能有效识别传输频带内音调干扰、噪声干扰、扫频干扰、脉冲噪声干扰和锯齿波扫频干扰的类型、数量、干扰频率和时间范围,同时相比改进前的YOLOv3算法,平均精度提高了7.6%,权值文件、参数量和计算量分别降低了82.5%,82.6%,90%,对能耗受限场景下的实时检测具有潜在应用价值。展开更多
A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the sys...A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non linear systems and obviously improve modeling accuracy.展开更多
An effective algorithm for tank objects identification in a complex background that fea-tures the perceptual organization is proposed in this paper.With multi-window architecture,the algorithm consists of two parts:co...An effective algorithm for tank objects identification in a complex background that fea-tures the perceptual organization is proposed in this paper.With multi-window architecture,the algorithm consists of two parts:coarse recognition and detailed recognition.Based onprior knowledge,coarse recognition scans the entire image data,then gets the target-kerneland its interesting window to direct detailed processing.Moreover,the detailed recognitionexecutes a depth-first search which retrieves locally around the target-kernel in the windowaccording to the rule of similarity measure.Experimental results show that the algorithm canidentify tank objects in a complicated scene effectively.展开更多
基金supported by the National Key R&D Program of China(2021YFF0501102)the National Natural Science Foundation of China(52372308,U2368202,U1934219,52202392,52022010,U22A2046,52172322,and 62271486).
文摘The sliding chairs are important components that support the switch rail conversion in the railway turnout.Due to the harsh environmental erosion and the attack from the wheel vibration,the failure rate of the sliding chairs accounts for up to 10%of the total failure number in turnout.However,there is little research carried out in the existing literature to diagnose the deterioration states of the sliding chairs.To fill out this gap,by utilizing the images containing the sliding chairs,we propose an improved You Only Look Once version 7(YOLOv7)to identify the state of the sliding chairs.Specifically,to meet the challenge brought by the small inter-class differences among the sliding chair states,we first integrate the Convolutional Block Attention Module(CBAM)into the YOLOv7 backbone to screen the information conducive to state identification.Then,an extra detector for a small object is customized into the YOLOv7 network in order to detect the small-scale sliding chairs in images.Meanwhile,we revise the localization loss in the objective function as the Efficient Intersection over Union(EIoU)to optimize the design of the aspect ratio,which helps the localization of the sliding chairs.Next,to address the issue caused by the varying scales of the sliding chairs,we employ K-means++to optimize the priori selection of the initial anchor boxes.Finally,based on the images collected from real-world turnouts,the proposed method is verified and the results show that our method outperforms the basic YOLOv7 in the state identification of the sliding chairs with 4%improvements in terms of both mean Average Precision@0.5(mAP@0.5)and F1-score.
基金supported by the National Key R&D Program of China under Grant No.2018YFC1507302the National Natural Science Foundation of China under Grant No.42175006+1 种基金Jiangsu Youth Talent Promotion Project(2021-084)the Basic Research Fund of CAMS under Grant No.2020R002.
文摘The northeastern China cold vortex(NCCV)plays an important role in regional rainstorms over East Asia.Using the National Centers for Environmental Prediction Final reanalysis dataset and the Global Precipitation Measurement product,an objective algorithm for identifying heavy-precipitation NCCV(HPCV)events was designed,and the climatological features of 164 HPCV events from 2001 to 2019 were investigated.The number of HPCV events showed an upward linear trend,with the highest frequency of occurrence in summer.The most active region of HPCV samples was the Northeast China Plain between 40°–55°N.Most HPCV events lasted 3–5 days and had radii ranging from 250 to 1000 km.The duration of HPCV events with larger sizes was longer.About half of the HPCV events moved into(moved out of)the definition region(35°–60°N,115°–145°E),and half initiated(dissipated)within the region.The initial position was close to the western boundary of the definition region,and the final position was mainly near the eastern boundary.The locations associated with the precipitation were mostly concentrated within 2000 km southeast of the HPCV systems,and they were farther from the center in the cold season than in the warm season.
基金Supported By The Russian Science Foundation Grant No.23-21-00115,https://rscf.ru/en/project/23-21-00115/.
文摘Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements.
基金Supported by National Basic Research Program of China(973 Program)(2013CB035500) National Natural Science Foundation of China(61233004,61221003,61074061)+1 种基金 International Cooperation Program of Shanghai Science and Technology Commission (12230709600) the Higher Education Research Fund for the Doctoral Program of China(20120073130006)
文摘A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local optima. Optimal Identification of unknown groundwater pollution sources poses similar challenges. Optimization based methodology is often applied to identify the unknown source characteristics such as location and flux release history over time, in a polluted aquifer. Optimization based models for identification of these characteristics of unknown ground-water pollution sources rely on comparing the simulated effects of candidate solutions to the observed effects in terms of pollutant concentration at specified sparse spatiotemporal locations. The optimization model minimizes the difference between the observed pollutant concentration measurements and simulated pollutant concentration measurements. This essentially constitutes the objective function of the optimization model. However, the mathematical formulation of the objective function can significantly affect the accuracy of the results by altering the response contour of the solution space. In this study, two separate mathematical formulations of the objective function are compared for accuracy, by incorporating different scenarios of unknown groundwater pollution source identification problem. Simulated Annealing (SA) is used as the solution algorithm for the optimization model. Different mathematical formulations of the objective function for minimizing the difference between the observed and simulated pollutant concentration measurements show different levels of accuracy in source identification results. These evaluation results demonstrate the impact of objective function formulation on the optimal identification, and provide a basis for choosing an appropriate mathematical formulation for unknown pollution source identification in contaminated aquifers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41205040 and 41375078)the State Key Development Program for Basic Research,China(Grant No.2012CB955203)the Special Scientific Research Project for Public Interest(Grant No.GYHY201306021)
文摘Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.
文摘Hyperspectral remote sensing has become one of the research frontiers in ground object identification and classification. On the basis of reviewing the application of hyperspectral remote sensing in identification and classification of ground objects at home and abroad. The research results of identification and classification of forest tree species, grassland and urban land features were summarized. Then the researches of classification methods were summarized. Finally the prospects of hyperspectral remote sensing in ground object identification and classification were prospected.
文摘In this paper, we carry out QoE (Quality of Experience) assessment to investigate influences of olfactory and auditory senses on fairness for a networked virtual 3D object identification game with haptics. In the game, two players try to identify objects which are placed in a shared 3D virtual space. In the assessment, we carry out the game in four cases. Smells and sounds are presented in the first case, only sounds are done in the second case, and only smells are done in the third case. In the last case, we present neither smell nor sound. As a result, we demonstrate that the fairness deteriorates more largely as the difference in conditions between two users becomes larger.
文摘Risk management of projects is about the real time ev aluation and making of decisions proactively in order to maximize the probabilit y of achieving or surpassing the targets set for project objectives. Project objective generally includes three elements: time, cost, quality. Risk occurrin g in the projects will affect these three factors to some various degrees in the end. There are different emphases in each stage and integrated balanced goals b etween the three factors. A large complex engineering project generally consists of several stages each of which has variable objective combinations leading to variable important risks. In order to achieve strategic goals on the schedule under the restriction of lim ited resources, the paper gives the analysis of the so-called risk identificati on-assessment process on the basis of objective orientation. In this paper the set of involved mostly hazards is presented in terms of given objective weight v ector, and so is the model of risk ranking .By reducing the range of risk factor s step by step, risk manager could pay more attention to important ventures and effectively control of them. According to different objective combination at different stages, primary risk f actor sets at different stages are given. With the probability and their various effects to project objectives, evaluation of these sets is made aiming to r educing of the scope of risks and providing decision maker with a better decisio ns support. Successful projects are those, which focus on the relevant business objectives t hroughout the whole process and seek to information integration across project l ife cycle. This paper also introduces the idea of real time process of risk iden tification-assessment and presents a flow chart as a demonstration.
文摘This work focuses on the updating-based identification of the three-dimensional orthotropic elastic behavior of a thin carbon fiber reinforced plastic multilayer composite plate. This consists in identifying the engineering constants that minimize the relative deviations between the first eight experimental and three-dimensional finite element frequencies of the vibrating free plate. For this purpose, a multi-objective optimization procedure is applied;it exploits a Particle Swarm Optimizer algorithm (PSO) that is coupled to a metamodeling by the new response surfaces method procedure (NRSMP);the latter is based on numerical design experiments. The conducted sensitivity analyses indicate that the four engineering constants of the two-dimensional elasticity are the most influent.
基金Sponsored by the National Eleventh Five-year Plan Key Project of Ministry of Science and Technology of China(Grant No.2006BAJ03A05)and SpecialFunds for Research of Scientific and Technological Innovation Talents in Harbin(Grant No.RC2006XK007001).
文摘This paper proposes a kind of least square modeling method based on typical signal response to enhance modeling accuracy of heat engineering process and adapts the environment that modeling experiment conditions are limited. The principle of this method is, under the condition of known typical pulse, step and slope signal response and model structure, to give algorithm of model parameters of identified continuous system by least square mode through derivation. The method is applied to the identification of heat exchange process for a consumer substation, and identification result obtained is compared with that of other conventional methods. After the comparison the result shows that identification accuracy is improved obviously. In addition to the good identification accuracy, this method has the characteristics such as it can identify directly continuous system model, pure lagging time, and is not sensitive to data length in the identification process. All these characteristics show that this method is simple, easy to implement and has good practicability.
文摘According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.
基金support from the National Natural Science Foundation of China(Grant Nos.12174097 and 12304321)the Natural Science Foundation of Hunan Province(Grant Nos.2021JJ10008 and 2023JJ40202)the Research Foundation of Education Bureau of Hunan Province(Grant No.22B0871).
文摘Object identification and three-dimensional reconstruction techniques are always attractive research interests in machine vision,virtual reality,augmented reality,and biomedical engineering.Optical computing metasurface,as a two-dimensional artificial design component,has displayed the supernormal character of controlling phase,amplitude,polarization,and frequency distributions of the light beam,capable of performing mathematical operations on the input light field.Here,we propose and demonstrate an all-optical object identification technique based on optical computing metasurface,and apply it to 3D reconstruction.Unlike traditional mechanisms,this scheme reduces memory consumption in the processing of the contour surface extraction.The identification and reconstruction of experimental results from high-contrast and low-contrast objects agree well with the real objects.The exploration of the all-optical object identification and 3D reconstruction techniques provides potential applications of high efficiencies,low consumption,and compact systems.
文摘Especially in recent years, deep learning has become a very effective tool for object identification. However, in general, the automatic object identification tends not to work well on ambiguous, amorphous objects such as vegetation. In this study, we developed a simple but effective approach to identify ambiguous objects and applied the method to several moss species. The technique called chopped picture method, where teacher images are systematically dissected into numerous small squares. As a result, the model correctly classified 3 moss species and “non-moss” objects in test images with accuracy more than 90%. Using this approach will help progress in computer vision studies for various ambiguous objects.
基金This work is supported by the National Key Research and Development Pro-gram of China under contract(Grant No.2019YFC1510201 and Grant No.2018YFC1505602).
文摘The present study identifies wintertime cold fronts in Eurasia from gridded datasets using a new objective two-step identification scheme.The simple and classic conception of a front is adopted,where a cold front is identified as the warm boundary of the frontal zone with a suitable horizontal temperature gradient and cold advection.We combine the traditional thermal front parameter with temperature advection to first identify the cold frontal zone,and then its eastern and southern boundaries are objectively plotted as a cold front in Eurasia.By comparing different cold front identification methods,the results from this two-step cold front identification method and subjective analysis are more consistent,and the positions of the cold front identified with our method are more reasonable.This objective technique is also applied to a nationwide cold wave event over China.Results show that the horizontal extent and movement of the cold front are in good agreement with the related circulation and the associated cold weather.The proposed method and results in this study may shed light on the rapid identification of cold fronts in operational weather analysis and facilitate further research on the long-term activity characteristics of continental cold fronts.
文摘干扰识别是无线电监测和通信抗干扰的关键环节。针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)宽带传输系统中潜在的干扰问题,提出了一种基于目标检测网络的干扰识别方法。核心思想是将传输频带中的多干扰识别问题转化为时频谱图中的多目标检测问题,进而利用改进的目标检测算法进行识别。实验结果表明,该方法能有效识别传输频带内音调干扰、噪声干扰、扫频干扰、脉冲噪声干扰和锯齿波扫频干扰的类型、数量、干扰频率和时间范围,同时相比改进前的YOLOv3算法,平均精度提高了7.6%,权值文件、参数量和计算量分别降低了82.5%,82.6%,90%,对能耗受限场景下的实时检测具有潜在应用价值。
文摘A method of fuzzy identification based on a new objective function is proposed. The method could deal with the issue that input variables of a system have an effect on the input space while output variables of the system do not exert an influence on the input space in the proposed objective functions of fuzzy clustering. The method could simultaneously solve the problems about structure identification and parameter estimation; thus it makes the fuzzy model become optimal. Simulation example demonstrates that the method could identify non linear systems and obviously improve modeling accuracy.
基金Supported by National Defense Science and Technology Foundation of China.
文摘An effective algorithm for tank objects identification in a complex background that fea-tures the perceptual organization is proposed in this paper.With multi-window architecture,the algorithm consists of two parts:coarse recognition and detailed recognition.Based onprior knowledge,coarse recognition scans the entire image data,then gets the target-kerneland its interesting window to direct detailed processing.Moreover,the detailed recognitionexecutes a depth-first search which retrieves locally around the target-kernel in the windowaccording to the rule of similarity measure.Experimental results show that the algorithm canidentify tank objects in a complicated scene effectively.