期刊文献+
共找到145篇文章
< 1 2 8 >
每页显示 20 50 100
Optimizing Grey Wolf Optimization: A Novel Agents’ Positions Updating Technique for Enhanced Efficiency and Performance
1
作者 Mahmoud Khatab Mohamed El-Gamel +2 位作者 Ahmed I. Saleh Asmaa H. Rabie Atallah El-Shenawy 《Open Journal of Optimization》 2024年第1期21-30,共10页
Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of ... Grey Wolf Optimization (GWO) is a nature-inspired metaheuristic algorithm that has gained popularity for solving optimization problems. In GWO, the success of the algorithm heavily relies on the efficient updating of the agents’ positions relative to the leader wolves. In this paper, we provide a brief overview of the Grey Wolf Optimization technique and its significance in solving complex optimization problems. Building upon the foundation of GWO, we introduce a novel technique for updating agents’ positions, which aims to enhance the algorithm’s effectiveness and efficiency. To evaluate the performance of our proposed approach, we conduct comprehensive experiments and compare the results with the original Grey Wolf Optimization technique. Our comparative analysis demonstrates that the proposed technique achieves superior optimization outcomes. These findings underscore the potential of our approach in addressing optimization challenges effectively and efficiently, making it a valuable contribution to the field of optimization algorithms. 展开更多
关键词 grey wolf optimization (GWO) Metaheuristic algorithm optimization Problems Agents’ Positions Leader Wolves Optimal Fitness Values optimization Challenges
下载PDF
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
2
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Smart Fraud Detection in E-Transactions Using Synthetic Minority Oversampling and Binary Harris Hawks Optimization
3
作者 Chandana Gouri Tekkali Karthika Natarajan 《Computers, Materials & Continua》 SCIE EI 2023年第5期3171-3187,共17页
Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ens... Fraud Transactions are haunting the economy of many individuals with several factors across the globe.This research focuses on developing a mechanism by integrating various optimized machine-learning algorithms to ensure the security and integrity of digital transactions.This research proposes a novel methodology through three stages.Firstly,Synthetic Minority Oversampling Technique(SMOTE)is applied to get balanced data.Secondly,SMOTE is fed to the nature-inspired Meta Heuristic(MH)algorithm,namely Binary Harris Hawks Optimization(BinHHO),Binary Aquila Optimization(BAO),and Binary Grey Wolf Optimization(BGWO),for feature selection.BinHHO has performed well when compared with the other two.Thirdly,features from BinHHO are fed to the supervised learning algorithms to classify the transactions such as fraud and non-fraud.The efficiency of BinHHO is analyzed with other popular MH algorithms.The BinHHO has achieved the highest accuracy of 99.95%and demonstrates amore significant positive effect on the performance of the proposed model. 展开更多
关键词 Metaheuristic algorithms K-nearest-neighbour binary aquila optimization binary grey wolf optimization BinHHO optimization support vector machine
下载PDF
VGWO: Variant Grey Wolf Optimizer with High Accuracy and Low Time Complexity
4
作者 Junqiang Jiang Zhifang Sun +3 位作者 Xiong Jiang Shengjie Jin Yinli Jiang Bo Fan 《Computers, Materials & Continua》 SCIE EI 2023年第11期1617-1644,共28页
The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple pr... The grey wolf optimizer(GWO)is a swarm-based intelligence optimization algorithm by simulating the steps of searching,encircling,and attacking prey in the process of wolf hunting.Along with its advantages of simple principle and few parameters setting,GWO bears drawbacks such as low solution accuracy and slow convergence speed.A few recent advanced GWOs are proposed to try to overcome these disadvantages.However,they are either difficult to apply to large-scale problems due to high time complexity or easily lead to early convergence.To solve the abovementioned issues,a high-accuracy variable grey wolf optimizer(VGWO)with low time complexity is proposed in this study.VGWO first uses the symmetrical wolf strategy to generate an initial population of individuals to lay the foundation for the global seek of the algorithm,and then inspired by the simulated annealing algorithm and the differential evolution algorithm,a mutation operation for generating a new mutant individual is performed on three wolves which are randomly selected in the current wolf individuals while after each iteration.A vectorized Manhattan distance calculation method is specifically designed to evaluate the probability of selecting the mutant individual based on its status in the current wolf population for the purpose of dynamically balancing global search and fast convergence capability of VGWO.A series of experiments are conducted on 19 benchmark functions from CEC2014 and CEC2020 and three real-world engineering cases.For 19 benchmark functions,VGWO’s optimization results place first in 80%of comparisons to the state-of-art GWOs and the CEC2020 competition winner.A further evaluation based on the Friedman test,VGWO also outperforms all other algorithms statistically in terms of robustness with a better average ranking value. 展开更多
关键词 Intelligence optimization algorithm grey wolf optimizer(GWO) manhattan distance symmetric coordinates
下载PDF
Grey Wolf Optimizer to Real Power Dispatch with Non-Linear Constraints
5
作者 G.R.Venkatakrishnan R.Rengaraj S.Salivahanan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第4期25-45,共21页
A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimizati... A new and efficient Grey Wolf Optimization(GWO)algorithm is implemented to solve real power economic dispatch(RPED)problems in this paper.The nonlinear RPED problem is one the most important and fundamental optimization problem which reduces the total cost in generating real power without violating the constraints.Conventional methods can solve the ELD problem with good solution quality with assumptions assigned to fuel cost curves without which these methods lead to suboptimal or infeasible solutions.The behavior of grey wolves which is mimicked in the GWO algorithm are leadership hierarchy and hunting mechanism.The leadership hierarchy is simulated using four types of grey wolves.In addition,searching,encircling and attacking of prey are the social behaviors implemented in the hunting mechanism.The GWO algorithm has been applied to solve convex RPED problems considering the all possible constraints.The results obtained from GWO algorithm are compared with other state-ofthe-art algorithms available in the recent literatures.It is found that the GWO algorithm is able to provide better solution quality in terms of cost,convergence and robustness for the considered ELD problems. 展开更多
关键词 grey wolf optimization(GWO) constraints power generation DISPATCH EVOLUTIONARY computation computational COMPLEXITY algorithms
下载PDF
Hybridized Intelligent Neural Network Optimization Model for Forecasting Prices of Rubber in Malaysia
6
作者 Shehab Abdulhabib Alzaeemi Saratha Sathasivam +2 位作者 Majid Khan bin Majahar Ali K.G.Tay Muraly Velavan 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1471-1491,共21页
Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price o... Rubber producers,consumers,traders,and those who are involved in the rubber industry face major risks of rubber price fluctuations.As a result,decision-makers are required to make an accurate estimation of the price of rubber.This paper aims to propose hybrid intelligent models,which can be utilized to forecast the price of rubber in Malaysia by employing monthly Malaysia’s rubber pricing data,spanning from January 2016 to March 2021.The projected hybrid model consists of different algorithms with the symbolic Radial Basis Functions Neural Network k-Satisfiability Logic Mining(RBFNN-kSAT).These algorithms,including Grey Wolf Optimization Algorithm,Artificial Bee Colony Algorithm,and Particle Swarm Optimization Algorithm were utilized in the forecasting data analysis.Several factors,which affect the monthly price of rubber,such as rubber production,total exports of rubber,total imports of rubber,stocks of rubber,currency exchange rate,and crude oil prices were also considered in the analysis.To evaluate the results of the introduced model,a comparison has been conducted for each model to identify the most optimum model for forecasting the price of rubber.The findings showed that GWO with RBFNN-kSAT represents the most accurate and efficient model compared with ABC with RBFNNkSAT and PSO with RBFNN-kSAT in forecasting the price of rubber.The GWO with RBFNN-kSAT obtained the greatest average accuracy(92%),with a better correlation coefficient R=0.983871 than ABC with RBFNN-kSAT and PSO with RBFNN-kSAT.Furthermore,the empirical results of this study provided several directions for policymakers to make the right decision in terms of devising proper measures in the industry to address frequent price changes so that the Malaysian rubber industry maintains dominance in the international markets. 展开更多
关键词 Rubber prices in Malaysia grey wolf optimization algorithm radial basis functions neural network k-satisfiability commodity prices
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
7
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:1
8
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升机 滑动窗口法 Halton
下载PDF
采煤机滚筒工作性能优化研究
9
作者 王宏伟 郭军军 +3 位作者 梁威 耿毅德 陶磊 李进 《工矿自动化》 CSCD 北大核心 2024年第4期133-143,共11页
在实际生产中,截割破碎过程是多作用耦合的结果,离散元法(DEM)与多体动力学(MBD)双向耦合技术可实现煤机设备与煤壁的信息交互,符合实际生产情况,具有较大的优越性。为提高采煤机滚筒的工作性能,基于DEM−MBD双向耦合机理,结合力学性能... 在实际生产中,截割破碎过程是多作用耦合的结果,离散元法(DEM)与多体动力学(MBD)双向耦合技术可实现煤机设备与煤壁的信息交互,符合实际生产情况,具有较大的优越性。为提高采煤机滚筒的工作性能,基于DEM−MBD双向耦合机理,结合力学性能试验和模拟试验得到实际工况参数,采用仿真软件EDEM和RecurDyn建立了采煤机滚筒截割煤壁的双向耦合模型,对仿真过程中滚筒所受的转矩和截割力进行分析,证明耦合效果和截割效果较好。设计了单因素试验和正交试验,分析了滚筒运行参数对工作性能的影响规律,并利用SPSS软件得到滚筒转速、截割深度、牵引速度对截割比能耗、装煤率、载荷波动系数的影响程度,通过现场试验验证了模型的可行性。构建了以滚筒转速、截割深度、牵引速度为决策变量,以截割比能耗、装煤率和载荷波动系数为目标的多目标优化模型,利用改进多目标灰狼(MOGWO)算法和优劣解距离法(TOPSIS)对模型进行求解,得出当滚筒转速为31.12 r/min、截割深度为639.4 mm、牵引速度为5.58 m/min时,采煤机滚筒的工作性能最优,此时截割比能耗为0.4677 kW·h/^(3),装煤率为43.01%,载荷波动系数为0.3278。 展开更多
关键词 采煤机滚筒 双向耦合机理 离散元法 多体动力学 多目标优化 改进多目标灰狼优化算法 优劣解距离法
下载PDF
基于改进灰狼算法的微网多主体主从博弈策略
10
作者 陈晓梅 周博 蔡烨 《科学技术与工程》 北大核心 2024年第18期7701-7709,共9页
为平衡包含电、热两种能源形式的微网系统内各参与者间的利益关系,通过改进灰狼算法提出了一种微网能量管理模型。首先,在充分分析微网结构及其各主体功能的基础上,为综合考虑源-网-荷的决策能力,将主从博弈方法应用于产能商、微网运营... 为平衡包含电、热两种能源形式的微网系统内各参与者间的利益关系,通过改进灰狼算法提出了一种微网能量管理模型。首先,在充分分析微网结构及其各主体功能的基础上,为综合考虑源-网-荷的决策能力,将主从博弈方法应用于产能商、微网运营商、负荷聚合商之间的互动,建立一主多从的微网能量管理数学模型;其次,针对博弈上层模型高维、非线性的特点,在传统灰狼算法基础上,利用Tent映射对种群进行初始化、采用非线性收敛因子平衡种群搜索能力、利用莱维飞行策略降低陷入局部最优的风险。在模型求解时,博弈上层采用改进灰狼算法,下层采用二次规划方法,二者结合以探讨使各主体利益最大的策略;最后,通过算例进行验证,结果表明:本文算法更加高效,所提模型在提高参与者收益,平滑用户负荷分布方面更加优越。 展开更多
关键词 主从博弈 微网 改进灰狼算法 优化运行
下载PDF
考虑三级调度网络的应急物资多资源动态调度问题研究
11
作者 王付宇 贺昕 +2 位作者 王欣蕊 周鑫鑫 李艳 《安全与环境学报》 CAS CSCD 北大核心 2024年第8期3180-3190,共11页
为解决重大公共卫生事件发生后的物资调度问题,运用SEIR模型预测需求点的各类受灾人群,构建需求预测模型;以综合物资分配满意度最大、综合运输时间满意度最大和综合救援成本最小为目标,采用多供应点、多配送中心、多需求点的三级调度网... 为解决重大公共卫生事件发生后的物资调度问题,运用SEIR模型预测需求点的各类受灾人群,构建需求预测模型;以综合物资分配满意度最大、综合运输时间满意度最大和综合救援成本最小为目标,采用多供应点、多配送中心、多需求点的三级调度网络,实现多周期、多资源的动态调度;引入混沌反向学习、非线性收敛因子、随机差分变异和贪婪选择策略改进灰狼优化算法,并对模型进行求解。结果表明,该模型可有效平衡物资调度的满意度与经济性,改进灰狼优化算法可得到更优越的调度方案,解决灾后多周期应急物资调度问题。 展开更多
关键词 公共安全 应急物资调度 需求预测 改进灰狼优化算法 多目标优化
下载PDF
突发自然灾害下的两阶段多目标应急物资中心选址问题研究
12
作者 王付宇 王欣蕊 《安全与环境学报》 CAS CSCD 北大核心 2024年第2期654-665,共12页
针对突发灾害情况下需求不确定的选址问题,构建最小化经济成本和最大化满意度的应急物资中心选址模型。首先,将选址问题划分为初期和后期的两阶段问题;其次,对物资需求量进行模糊需求预测,并使用可信性模糊机会约束规划将其转化为确定... 针对突发灾害情况下需求不确定的选址问题,构建最小化经济成本和最大化满意度的应急物资中心选址模型。首先,将选址问题划分为初期和后期的两阶段问题;其次,对物资需求量进行模糊需求预测,并使用可信性模糊机会约束规划将其转化为确定型约束;最后,设计改进灰狼优化(Improved Grey Wolf Optimization,IGWO)算法求解问题。IGWO算法采用佳点集初始化种群,对收敛因子进行余弦规律的非线性变化,并在粒子群优化(Particle Swarm Optimization,PSO)算法个体记忆的启发下,设计个体位置更新公式。在用10个标准函数验证IGWO有效性的基础上,通过湖北省新型冠状病毒应急物资中心选址案例分析,表明IGWO算法能有效求解多目标选址问题,在提高满意度的基础上降低经济成本,且多阶段模型在平衡满意度和经济成本方面结果更优。 展开更多
关键词 公共安全 应急救援选址 改进灰狼优化算法 多目标优化 模糊需求 个体记忆
下载PDF
基于EEMD-IGWO-SVM的电机轴承故障诊断
13
作者 张涛 杨旭 +3 位作者 李玉梅 郭鹤 石广远 陈学勇 《机床与液压》 北大核心 2024年第10期174-181,共8页
针对电机轴承易发生损坏、传统诊断方法耗时长且准确度低等问题,提出一种基于改进灰狼优化算法(IGWO)优化支持向量机(SVM)的电机轴承故障诊断方法。对电机振动数据进行集成经验模态分解(EEMD),提取出IMF能量矩作为特征向量,并结合IGWO-... 针对电机轴承易发生损坏、传统诊断方法耗时长且准确度低等问题,提出一种基于改进灰狼优化算法(IGWO)优化支持向量机(SVM)的电机轴承故障诊断方法。对电机振动数据进行集成经验模态分解(EEMD),提取出IMF能量矩作为特征向量,并结合IGWO-SVM分类器,构造电机轴承故障检测模型。在模型引入改进Tent混沌映射、非线性收敛因子、动态权重策略,得到改进的分类算法,该算法可以快速精准地寻找SVM的最优惩罚参数C和核参数γ。对电机轴承振动数据进行仿真实验,诊断结果表明该轴承故障方法平均准确率高达99.4%。最后通过实验验证提出的诊断方法具有良好的算法稳定性和抗噪性能,可有效提高故障诊断精度。 展开更多
关键词 电机 故障诊断 支持向量机 改进灰狼优化算法
下载PDF
改进时间卷积网络下局域网异常状态预测方法
14
作者 葛昕 岳敏楠 《计算机仿真》 2024年第1期438-442,共5页
局域网异常会阻碍网络运行速度,严重时会导致网络瘫痪。为了精准预测局域网是否存在异常,提出一种基于改进时间卷积网络的局域网异常预测方法。组建变分模态分解(Variational Mode Decomposition,VMD)高频噪声分量判定标准,剔除高频分量... 局域网异常会阻碍网络运行速度,严重时会导致网络瘫痪。为了精准预测局域网是否存在异常,提出一种基于改进时间卷积网络的局域网异常预测方法。组建变分模态分解(Variational Mode Decomposition,VMD)高频噪声分量判定标准,剔除高频分量,将剩余VMD分量叠加重构,去除局域网数据中的噪声。建立局域网异常预测模型,将去噪后的局域网数据特征数值规约到和灰度图像像素值对应的范围内,形成局域网灰度图,并将其输入到改进时间卷积网络结构中训练和模型调优,完成局域网异常预测。经实验测试证明,所提方法可以获取高精度和高效率的局域网异常预测结果,在局域网异常预测领域具有广阔的发展前景。 展开更多
关键词 改进时间卷积网络 局域网 改进灰狼优化算法 异常预测 变分模态分解
下载PDF
Short-term wind power prediction using an improved grey wolf optimization algorithm with back-propagation neural network 被引量:1
15
作者 Liming Wei Shuo Xv Bin Li 《Clean Energy》 EI 2022年第2期288-296,共9页
A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a trad... A short-term wind power prediction method is proposed in this paper with experimental results obtained from a wind farm located in Northeast China.In order to improve the accuracy of the prediction method using a traditional back-propagation(BP)neural network algorithm,the improved grey wolf optimization(IGWO)algorithm has been adopted to optimize its parameters.The performance of the proposed method has been evaluated by experiments.First,the features of the wind farm are described to show the fundamental information of the experiments.A single turbine with rated power of 1500 kW and power generation coefficient of 2.74 in the wind farm was introduced to show the technical details of the turbines.Original wind power data of the whole farm were preprocessed by using the quartile method to remove the abnormal data points.Then,the retained wind power data were predicted and analysed by using the proposed IGWO-BP algorithm.Analysis of the results proves the practicability and efficiency of the prediction model.Results show that the average accuracy of prediction is~11%greater than the traditional BP method.In this way,the proposed wind power prediction method can be adopted to improve the accuracy of prediction and to ensure the effective utilization of wind energy. 展开更多
关键词 wind power prediction back-propagation neural network improved grey wolf optimization IGWO
原文传递
基于改进灰狼算法优化LSTM的光伏发电功率短期预测
16
作者 袁建华 谈顺 刘闯 《电力学报》 2024年第2期111-118,共8页
为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光... 为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。 展开更多
关键词 光伏发电功率 短期预测 改进灰狼算法 长短时记忆神经网络
下载PDF
主被动协同定位空能资源优化配置方法
17
作者 吕佩霞 赵越 +2 位作者 李赞 白豆 郝本建 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第4期29-38,共10页
无人机的快速发展为当今社会带来巨大便利,但其潜在的滥用现象对公共安全构成严重威胁,因此面向无人机的监测与定位技术近年来得到广泛研究。针对远距低飞无人机难以准确定位的应用问题,提出以无源为主、有源为辅的主被动协同定位框架,... 无人机的快速发展为当今社会带来巨大便利,但其潜在的滥用现象对公共安全构成严重威胁,因此面向无人机的监测与定位技术近年来得到广泛研究。针对远距低飞无人机难以准确定位的应用问题,提出以无源为主、有源为辅的主被动协同定位框架,在基于到达时间差实现无源被动定位的基础上,引入支持往返到达时间测量的有源主动探测设备,择机对无人机进行主动式定位,补偿无源定位缺失的目标高程信息,从而提升无人机的三维定位精度。为充分挖掘主被动的协同定位潜力,文中深入探究无源被动定位节点预先部署的情况下,有源主动定位节点的空域和能域资源的配置方式,推导了主被动协同定位框架下的定位精度衡量指标,构建了空能资源联合优化问题,提出了基于非线性收敛因子和记忆指导的改进灰狼优化的空能资源优化算法。仿真结果表明,针对无人机定位时,主被动协同定位效果优于无源被动定位,典型场景下高程定位精度显著提升约96.33%。此外,所提的空能资源优化算法在求解空能资源联合优化问题时,性能优于标准(传统)灰狼算法、改进灰狼算法等。 展开更多
关键词 协同定位 到达时间差 往返到达时间 改进灰狼优化 联合优化
下载PDF
基于小样本数据驱动的弹壳打凹—平底成形工艺参数优化决策方法
18
作者 梁强 李雄 +4 位作者 王海洋 王伟任 徐永航 刘新 杜彦斌 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期1086-1096,共11页
针对某外贸款弹壳在调试生产中加工质量差和模具寿命短的问题,提出一种基于小样本数据驱动的弹壳打凹-平底成形工艺参数多目标优化与决策方法。首先,利用中心复合试验法设计试验,将各试验方案代入有限元模型中进行数值模拟,以仿真结果... 针对某外贸款弹壳在调试生产中加工质量差和模具寿命短的问题,提出一种基于小样本数据驱动的弹壳打凹-平底成形工艺参数多目标优化与决策方法。首先,利用中心复合试验法设计试验,将各试验方案代入有限元模型中进行数值模拟,以仿真结果为基础采用随机森林算法建立弹壳打凹-平底成形工艺参数与打凹下冲头最大等效应力、平底上冲头最大等效应力和平底成形后弹壳内圆角的多目标优化模型。其次,应用改进多目标灰狼优化算法对多目标优化模型进行寻优并获得非劣解集,采用主客观综合熵权-优劣解距离法评价决策出最优工艺参数组合。最后,采用该优化工艺参数组合进行数值模拟和工艺试验,结果显示,模拟结果与工艺试验结果吻合,弹壳底部内圆角充填饱满,模具使用寿命得到提高。 展开更多
关键词 弹壳 小样本驱动 改进多目标灰狼优化算法 打凹-平底成形
下载PDF
基于退火狼群算法的卫星星座网络抗毁性优化
19
作者 王明霞 陈晓明 雍可南 《吉林大学学报(信息科学版)》 CAS 2024年第1期1-13,共13页
为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评... 为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评估,并按照节点重要度排序依次攻击。以网络连通度与网络连通效率为优化目标,卫星星座网络通信限制为约束条件,采用运动算子的思想实现狼群自适应步长的游走、召唤和围攻。使用通过优化得出的加边方案对网络结构进行优化。实验表明,与其他优化算法相比,该算法具有优越性,解决了卫星星座网络在受到攻击后工作能力下降的问题,提高了其受到攻击后的抗毁性。 展开更多
关键词 卫星星座网络 抗毁性优化 模拟退火算法 改进狼群算法
下载PDF
具有最小信息延迟的多无人机路径规划方法
20
作者 陈洋 钟树成 陈志环 《中国惯性技术学报》 EI CSCD 北大核心 2024年第5期521-530,共10页
在一些实时性要求高的监测任务中,为提升多无人机协同工作的效能,提出了具有最小信息延迟的多无人机路径规划方法。首先定义最大信息延迟描述监测信息的时效性,综合考虑了无人机能量、禁飞区等多种约束,以无人机信息延迟和飞行总距离为... 在一些实时性要求高的监测任务中,为提升多无人机协同工作的效能,提出了具有最小信息延迟的多无人机路径规划方法。首先定义最大信息延迟描述监测信息的时效性,综合考虑了无人机能量、禁飞区等多种约束,以无人机信息延迟和飞行总距离为优化目标,建立多无人机路径规划模型。然后,提出一种改进的多目标灰狼算法,引入交叉算子完成灰狼位置更新以增强其全局搜索能力,引入大规模邻域算法以提高其局部搜索能力。最后,利用概率路图算法对得到的飞行方案进行局部避障优化,从而得到最终的路径规划结果。仿真和实验结果表明,所提算法不仅可以得到很好的路径规划结果,而且对比NSGA-Ⅱ算法,本文算法得到的飞行路径总距离分别缩短了3.34%、5.09%,最大延迟时间降低了11.02%、15.66%,验证了所提算法的可行性和有效性。 展开更多
关键词 信息延迟 改进多目标灰狼算法 路径规划 避障 概率路图算法
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部