The Jiangjia Gully, which is located in Dongchuan District, Yunnan Province, China, is a watershed prone to debris flows and has long-term recorded data of debris-flow occurrence. However, the initiation mechanism has...The Jiangjia Gully, which is located in Dongchuan District, Yunnan Province, China, is a watershed prone to debris flows and has long-term recorded data of debris-flow occurrence. However, the initiation mechanism has mainly been studied by experiments in this watershed. To further reveal debris-flow formation mechanism in the Jiangjia Gully, debris-flow activities in the initiation zone were observed with hand-held video cameras in the summer of 2016 and 2017. In these two years, six debris-flow events were triggered in Menqian Gully, a major tributary of the Jiangjia Gully, while debrisflow activities in some sub-watersheds of Menqian Gully were recorded with video cameras in four events. The video recording shows that landslides constituted an important source for sediment supply in debris flow. Some landslides directly evolved into debris flows, while the others released sediment into rills and channels, where debris flows were generated for sediment entrainment by water flow. Therefore, debris-flow occurrence in the Jiangjia Gully is influenced both by infiltration-dominated processes and by runoff-dominated processes. In addition, rainfall data from four gauges installed in Menqian Gully were analyzed using mean intensity(I), duration(D), peak 10-minute rainfall(R10min) and antecedent rainfall(AR) up to 15 days prior to peak 10-minute rainfall. It reveals that debris-flow triggering events can be discriminated from nontriggering events either by an I-D threshold or by an R10min-AR threshold. However, false alarms can be greatly reduced if these two kinds of thresholds are used together. Moreover, behaviors including intermittency of debris flow, variance in moisture content and volume among surges, and coalescence of multiple surges by temporary damming were observed, indicating the complexity of debris-flow initiation processes. These findings are expected to enhance our knowledge on debris-flow formation mechanism in regions with similar environmental settings.展开更多
Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dyn...Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.展开更多
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a cata...Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.展开更多
On 4th November 2OLO, a debris flow detached from a large debris cover accumulated above the lowermost portion of the Rotolon landslide (Vicentine Pre-AIps, NE Italy) and channelized in the valley below within the R...On 4th November 2OLO, a debris flow detached from a large debris cover accumulated above the lowermost portion of the Rotolon landslide (Vicentine Pre-AIps, NE Italy) and channelized in the valley below within the Rotolon Creek riverbed. Such event evolved into a highly mobile and sudden debris flow, damaging some hydraulic works and putting at high risk four villages located along the creek banks. A monitoring campaign was carried out by means of a ground based radar interferometer (GB-InSAR) to evaluate any residual displacement risk in the affected area and in the undisturbed neighbouring materials. Moreover, starting from the current slope condition, a landslide runout numerical modelling was performed by means of DAN-3D code to assess the impacted areas, flow velocity, and deposit distribution of the simulated events. The rheological parameters necessary for an accurate modelling were obtained through the back analysis of the 2010 debris flow event. Back analysis was calibrated with all of the available terrain data coming from field surveys and ancillary documents, such as topographic, geomorphological and geological maps, with pre- and post-event LiDAR derived DTMs, and with orthophotos. Finally, to identify new possible future debris flow source areas as input data for the new modelling, all the obtained terrain data were reanalysed and integrated with the GB-InSAR displacement maps; consequently, new simulations were made to forecast future events. The results show that the integration of the selected modelling technique with ancillary data and radar displacement maps can be a very useful tool for managing problems related to debris flow events in the examined area.展开更多
A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a co...A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a constant elevation and accelerated along a higher chute to impact substrate materials with different water contents and particle size distributions in the lower chute. Two high-speed cameras, pore and earth pressure detecting devices, were placed in the substrate materials where severe scouring occurs in order to collect multiple measurements of dynamical and mechanical parameters. The entrainment dynamics were verified by geometrical analysis and quasi-static simulation. The results show that wet and fine materials that are placed in the lower chute with steeper slopes are easily entrained during debris flow initiation, the pattern of which can be described by Coulomb friction and the Mohr-Coulomb law. Elaborate measurements of dynamical parameters enable the results of an elementary computational framework to predict the time-dependent scouring depth ht, which provides insight into rapidly determining debris flow propagation. Finally, the post-entrainment dynamics were studied. The results indicate that the propagation and the amplification of debris flows along erodible beds are dominated by the velocity and the solid volume fraction of the mixed substrate, and the coarse particle group of the substrate is a key feature affected by momentum changes.展开更多
A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influen...A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influence of flow drag force on slope stability;(2)back-analyze the movement process of debris flow.First,the geological background and movement of this debris flow were described based on a field investigation.Then,drag force,calculated by the laminar flow theory,is added to the slope stability calculation model,which elaborates the initiation process of this disaster.Moreover,dynamic simulation software(DAN3D)was used to simulate the kinematic process of the debris flow with a variety of combination models.The study shows that the terrace area can quickly produce surface runoff and create a drag force under rainfall conditions,which is the essential reason for the initiation of debris flow.In addition,the use of the FVV(Frictional-Voellmy-Voellmy)model is found to provide the best performance in simulating this type of debris flow,which reveals that it lasts approximately 200 s and that the maximum velocity is 12 m/s.展开更多
Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms tr...Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms triggered numerous slope debris flows with great damage to highways and rivers over the subsequent two years.Slope debris flows(as opposed to channelized debris flows) are defined as phenomena in which high-concentration mixtures of debris and water flow down slopes for short distances to highways and river banks.Based on field investigations and measurements of 19 slope debris flows,their main characteristics and potential mitigation strategies were studied.High rainfall intensity is the main triggering factor.Critical rainfall intensities for simultaneous occurrence of single,several and numerous slope debris flow events were 20 mm/day,30mm/day,and 90 mm/day,respectively.Field investigations also revealed that slope debris flows consist of high concentrations of cobbles,boulders and gravel.They are two-phase debris flows.The liquid phase plays the role of lubrication instead of transporting medium.Solid particles collide with each other and consume a lot of energy.The velocities of slope debris flows are very low,and their transport distances are only several tens of meters.Slope debris flows may be controlled by construction of drainage systems and by reforestation.展开更多
The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and ...The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.展开更多
Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris...Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s^(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s^(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.展开更多
Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the ...Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the Yindongzi gully in Dujiangyan City, Sichuan province, China with scaled-down model experiments. We set rainfall intensity and slope angle as dominating parameters and carried out 20 scaled-down model tests under artificial rainfall conditions. The experiments set four slope angles(32°, 34°, 37°, 42°) and five rainfall intensities(60 mm/h, 90 mm/h, 120 mm/h, 150 mm/h, and 180 mm/h) treatments. The characteristic variables in the experiments, such as, rainfall duration, pore water pressure, moisture content, surface inclination, and volume were monitored. The experimental results revealed the failure mode of loose slope material and the process of slope debris flow initiation, as well as the relationship between the surface deformation and the physical parameters of experimental model. A traditional rainfall intensity-duration early warning model(I-D model) was firstly established by using a mathematical regression analysis, and it was then improved into ISD model and ISM model(Here, I is rainfall Intensity, S is Slope angle, D is rainfall Duration, and M is Moisture content). The warning model can provide reliable early warning of slope debris flow initiation.展开更多
The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine parti...The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particleaccumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.展开更多
The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic expl...The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.展开更多
A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China w...A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.展开更多
Large spoil tips from reconstruction works as a result of the Wenchuan Earthquake in China are new debris flow hazards to the human society.However,there is a lack of detailed comparative study on debris flow initiati...Large spoil tips from reconstruction works as a result of the Wenchuan Earthquake in China are new debris flow hazards to the human society.However,there is a lack of detailed comparative study on debris flow initiation in different spoil materials.This paper describes a series of tests and analyses on debris flow characteristics(initiation,scale and mechanism) at six sites with limestone and sandstone materials near the Dujiangyan area.Research shows the limestone spoil contains debris flow prone clay content with high concentration of montmorillonite(highly expandable).In addition,limestone spoil is of such a low permeability that water mainly concentrates in the upper surface layer.Those factors make it easy for the increase of pore water pressure,decline of internal friction and conhesion force,leading to the occurence of large debris flows.In contrast,the sandstone spoil is less problematic and causes no major debris flow threats.Based on our research on the mechanism,the"stereometric drainage"method is sucessfully applied to control limestone spoil debris flows.展开更多
Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on...Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on steep slopes or below cliffs in high mountain and deep valley areas, and at or near fault ends. They have no obvious relationships to active faults, but their relationships to the weathering degree and structures of rock and rock mass are obvious. Compared with the Wenchuan Ms 8.0 earthquake on May 12, 2008, the Lnshan earthquake is relatively little in the impact force and the throwing amount. All of these should be related to the magnitude of this earthquake, not very large but not very little. This character of the Lushan earthquake would make some processes uncompleted so as to bring about some concealed geohazards. Finally, in order to deal with challenges presented by such conceal geohazards, some brief recommendations are put forward.展开更多
To reveal the gravitational erosion process in the headstream area of Jiangjia Ravine, continuous observation was conduced duing the rainy season. The observation and research show that the change of water content of ...To reveal the gravitational erosion process in the headstream area of Jiangjia Ravine, continuous observation was conduced duing the rainy season. The observation and research show that the change of water content of the bank slope lags the precipitation process, the infiltration water concentrates mainly in the shallow layer of the bank slope, also the bank slope was unsaturated, the floods and debris flows in the gully down cut the gully bed, and scour the foot of the bank slope. These results in many collapses, which is the main type of gravitational erosion process, and it provides large amounts of loose solid materials for the eruption of debris flows.展开更多
A methodology is developed for interactive risk assessment of physical infrastructure and spatially distributed response systems subjected to debris flows.The proposed framework is composed of three components,namely ...A methodology is developed for interactive risk assessment of physical infrastructure and spatially distributed response systems subjected to debris flows.The proposed framework is composed of three components,namely geotechnical engineering,geographical information systems and disaster management.With the integration of slope stability analysis,hazard scenario and susceptibility,geological conditions are considered as temporary static data,while meteorological conditions are treated as dynamic data with a focus on typhoons.In this research,the relevant parameters required for database building are defined,and the procedures for building the geological database and meteorological data sets are explained.Based on the concepts and data sets,Nantou and Hualien in Taiwan are used as the areas for case studies.展开更多
When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordi...When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordingly,debris flow may happen.To investigate this phenomenon,a pseudothree-phase media is presented first.Then discontinuity method is used to analyze the expansion velocity of water film.Finally,perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water.The theoretical evolutions of pore pressure gradient,effective stress,water velocity,the porosity and the eroded fine grains are obtained.It can be seen clearly that with the erosion and redeposited of fine grains,permeability at some positions in the soil layer becomes smaller and smaller and,the pore pressure gradient becomes bigger and bigger,while the effective stress becomes smaller and smaller.When the effective stress equals zero,e.f.liquefaction,the water film occurs.It is shown also that once a water film occurs,it will be expanded in a speed of U(t)(1-ε).展开更多
Debris flow is one of the most destructive water related mass movements that affects the development of mountain terrains.A reliable assessment of debris flow susceptibility requires adequate data,but in most developi...Debris flow is one of the most destructive water related mass movements that affects the development of mountain terrains.A reliable assessment of debris flow susceptibility requires adequate data,but in most developing countries like India,there is a dearth of such extensive scientific records.This study presents a novel approach for assessing debris flow using the analytical network process(ANP)in data insufficient regions.A stretch of hill road between Kumburvayal and Vadakaunchi along the Kodaikkanal-Palani Traffic Corridor(M171)was considered for this study.Five significant factors including the nature of slope forming materials,hydraulic conductivity,slope,vegetation,and drainage density were identified from intense field surveys and inspections in order to assess the susceptibility of the terrain to debris flow.This model endorsed the interdependencies between the selected factors.The resulting debris flow susceptibility map delineated regions highly prone to debris flow occurrences,which constituted nearly 23%of the selected road stretch.展开更多
基金financially supported by the National Key Research and Development Program of China(2020YFD1100701)the Science and Technology Research and Development Program of China Railway(K2019G006)the Chongqing Municipal Bureau of Land,Resources and Housing Administration(KJ-2021016)。
文摘The Jiangjia Gully, which is located in Dongchuan District, Yunnan Province, China, is a watershed prone to debris flows and has long-term recorded data of debris-flow occurrence. However, the initiation mechanism has mainly been studied by experiments in this watershed. To further reveal debris-flow formation mechanism in the Jiangjia Gully, debris-flow activities in the initiation zone were observed with hand-held video cameras in the summer of 2016 and 2017. In these two years, six debris-flow events were triggered in Menqian Gully, a major tributary of the Jiangjia Gully, while debrisflow activities in some sub-watersheds of Menqian Gully were recorded with video cameras in four events. The video recording shows that landslides constituted an important source for sediment supply in debris flow. Some landslides directly evolved into debris flows, while the others released sediment into rills and channels, where debris flows were generated for sediment entrainment by water flow. Therefore, debris-flow occurrence in the Jiangjia Gully is influenced both by infiltration-dominated processes and by runoff-dominated processes. In addition, rainfall data from four gauges installed in Menqian Gully were analyzed using mean intensity(I), duration(D), peak 10-minute rainfall(R10min) and antecedent rainfall(AR) up to 15 days prior to peak 10-minute rainfall. It reveals that debris-flow triggering events can be discriminated from nontriggering events either by an I-D threshold or by an R10min-AR threshold. However, false alarms can be greatly reduced if these two kinds of thresholds are used together. Moreover, behaviors including intermittency of debris flow, variance in moisture content and volume among surges, and coalescence of multiple surges by temporary damming were observed, indicating the complexity of debris-flow initiation processes. These findings are expected to enhance our knowledge on debris-flow formation mechanism in regions with similar environmental settings.
基金sponsored by Natural Science Foundation of China (Grant No. 51269012)Major Projects of Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No. ZD0602)+2 种基金part of National Project 973 "Wenchuan Earthquake Mountain Hazards Formation Mechanism and Risk Control" (Grant No. 2008CB425800)funded by "New Century Excellent Talents" of University of Ministry of Education of China (Grant No. NCET-11-1016)China Scholarship Council
文摘Debris flow is one of the major secondary mountain hazards following the earthquake. This study explores the dynamic initiation mechanism of debris flows based on the strength reduction of soils through static and dynamic triaxial tests. A series of static and dynamic triaxial tests were conducted on samples in the lab. The samples were prepared according to different grain size distribution, degree of saturation and earthquake magnitudes. The relations of dynamic shear strength, degree of saturation, and number of cycles are summarized through analyzing experimental results. The findings show that the gravelly soil with a wide and continuous gradation has a critical degree of saturation of approximately 87%, above which debris flows will be triggered by rainfall, while the debris flow will be triggered at a critical degree of saturation of about 73% under the effect of rainfall and earthquake(M>6.5). Debris flow initiation is developed in the humidification process, and the earthquake provides energy for triggering debris flows. Debris flows are more likely to be triggered at the relatively low saturation under dynamic loading than under static loading. The resistance of debris flow triggering relies more on internal frication angle than soil cohesion under the effect of rainfall and earthquake. The conclusions provide an experimental analysis method for dynamic initiation mechanism of debris flows.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41861134008 and 41601476)the National Key Research and Development Program of China (Grant No. 2018YFC1505202)the 135 Strategic Program of the IMHE, CAS (Grant No. SDS-1351705)
文摘Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.
文摘On 4th November 2OLO, a debris flow detached from a large debris cover accumulated above the lowermost portion of the Rotolon landslide (Vicentine Pre-AIps, NE Italy) and channelized in the valley below within the Rotolon Creek riverbed. Such event evolved into a highly mobile and sudden debris flow, damaging some hydraulic works and putting at high risk four villages located along the creek banks. A monitoring campaign was carried out by means of a ground based radar interferometer (GB-InSAR) to evaluate any residual displacement risk in the affected area and in the undisturbed neighbouring materials. Moreover, starting from the current slope condition, a landslide runout numerical modelling was performed by means of DAN-3D code to assess the impacted areas, flow velocity, and deposit distribution of the simulated events. The rheological parameters necessary for an accurate modelling were obtained through the back analysis of the 2010 debris flow event. Back analysis was calibrated with all of the available terrain data coming from field surveys and ancillary documents, such as topographic, geomorphological and geological maps, with pre- and post-event LiDAR derived DTMs, and with orthophotos. Finally, to identify new possible future debris flow source areas as input data for the new modelling, all the obtained terrain data were reanalysed and integrated with the GB-InSAR displacement maps; consequently, new simulations were made to forecast future events. The results show that the integration of the selected modelling technique with ancillary data and radar displacement maps can be a very useful tool for managing problems related to debris flow events in the examined area.
基金the support of the National Key R&D Program of China (2017YFC1501102)the National Natural Science Foundation of China (51639007)the Youth Science and Technology Fund of Sichuan Province (2016JQ0011)
文摘A pair of flumes with variable inclinations were employed to investigate the entrainment mechanics and dynamical evolution of a debris avalanche/flow. A fixed quantity of solid and water mixture was released from a constant elevation and accelerated along a higher chute to impact substrate materials with different water contents and particle size distributions in the lower chute. Two high-speed cameras, pore and earth pressure detecting devices, were placed in the substrate materials where severe scouring occurs in order to collect multiple measurements of dynamical and mechanical parameters. The entrainment dynamics were verified by geometrical analysis and quasi-static simulation. The results show that wet and fine materials that are placed in the lower chute with steeper slopes are easily entrained during debris flow initiation, the pattern of which can be described by Coulomb friction and the Mohr-Coulomb law. Elaborate measurements of dynamical parameters enable the results of an elementary computational framework to predict the time-dependent scouring depth ht, which provides insight into rapidly determining debris flow propagation. Finally, the post-entrainment dynamics were studied. The results indicate that the propagation and the amplification of debris flows along erodible beds are dominated by the velocity and the solid volume fraction of the mixed substrate, and the coarse particle group of the substrate is a key feature affected by momentum changes.
基金supported by the National Natural Science Foundation of China(No.42077277)。
文摘A debris flow,with terraced fields as the source area,broke out on June 25th,2018 in the Xiaotuga area of Yunnan Province,China,and this kind of debris flow is rarely recorded.Two purposes in this study:(1)the influence of flow drag force on slope stability;(2)back-analyze the movement process of debris flow.First,the geological background and movement of this debris flow were described based on a field investigation.Then,drag force,calculated by the laminar flow theory,is added to the slope stability calculation model,which elaborates the initiation process of this disaster.Moreover,dynamic simulation software(DAN3D)was used to simulate the kinematic process of the debris flow with a variety of combination models.The study shows that the terrace area can quickly produce surface runoff and create a drag force under rainfall conditions,which is the essential reason for the initiation of debris flow.In addition,the use of the FVV(Frictional-Voellmy-Voellmy)model is found to provide the best performance in simulating this type of debris flow,which reveals that it lasts approximately 200 s and that the maximum velocity is 12 m/s.
基金supported by the Ministry of Science and Technology of China (2008CB425803)the State Key Laboratory of Hydroscience and Engineering at Tsinghua University (50823005,2009-ZY-2)
文摘Avalanches and landslides,induced by the Wenchuan Earthquake on May 12,2008,resulted in a lot of disaggregated,solid material on slopes that could be readily mobilized as source material for debris flows.Rainstorms triggered numerous slope debris flows with great damage to highways and rivers over the subsequent two years.Slope debris flows(as opposed to channelized debris flows) are defined as phenomena in which high-concentration mixtures of debris and water flow down slopes for short distances to highways and river banks.Based on field investigations and measurements of 19 slope debris flows,their main characteristics and potential mitigation strategies were studied.High rainfall intensity is the main triggering factor.Critical rainfall intensities for simultaneous occurrence of single,several and numerous slope debris flow events were 20 mm/day,30mm/day,and 90 mm/day,respectively.Field investigations also revealed that slope debris flows consist of high concentrations of cobbles,boulders and gravel.They are two-phase debris flows.The liquid phase plays the role of lubrication instead of transporting medium.Solid particles collide with each other and consume a lot of energy.The velocities of slope debris flows are very low,and their transport distances are only several tens of meters.Slope debris flows may be controlled by construction of drainage systems and by reforestation.
基金the National Natural Science Foundation of China (Nos. 40901007, 50979103)
文摘The erosion shape and the law of development of debris flow sabo dam downstream is a weak part in the study on debris flow erosion. The shape and development of scour pit have an important effect on the stability and safety of debris flow sabo dam, which determines the foundational depth of the dam and the design of protective measures downstream. Study on the scouring law of sabo dam downstream can evaluate the erosion range and reasonably arrange auxiliary protective engineering. Therefore, a series of flume experiments are carried out including different debris flow characteristics (density is varying from 1.5 t/m3 to 2.1 t/m~) and different gully longitudinal slopes. The result shows that the scour pit appears as an oval shape in a plane and deep in the middle while superficial at the ends in the longitudinal section, the position of the maximum depth point moves towards downstream with an increase of flume slope angle. The maximum depth of scour pit is mainly affected by the longitudinal slope of gully, density of debris flow, and the characteristics of gully composition (particle size and the viscosity of soil). The result also indicates that the viscosity of soil will weaken the erosion extent. The interior slopes of scour pit are different between the upstream and the downstream, and the downstream slope is smaller than the upper one. For the viscous and non-viscous sands with the same distribution of gradation, the interior slope of non- viscous sand is smaller than the viscous sand.According to tbe regression analysis on the experimental data, the quantitative relationship between the interior slope of scour pit, slope of repose under water and the longitudinal slope of gully is established and it can be used to calculate the interior slope of scour pit. The results can provide the basis for the parameter design of the debris flow control engineering foundation.
基金supported by the Grant-in-Aid for Scientific Research of Japan Society for the Promotion of Science (JSPS KAKENHI) (Grant Nos.80378918,26292077)
文摘Although information regarding the initiation processes of debris flows is important for the development of mitigation measures,field data regarding these processes are scarce.We conducted field observations of debris-flow initiation processes in the upper Ichinosawa catchment of the Ohya landslide,central Japan.On 19 June 2012,our videocamera monitoring systems recorded the moment of debris-flow initiation on channel deposits(nine surges) and talus slopes(eight surges).The initiation mechanisms of these surges were classified into three types by analyzing the video images: erosion by the surface flow,movement of deposits as a mass,and upward development of the fluid area.The first type was associated with the progress of surface flow from the upper stream on unsaturated channel deposits.The second type was likely caused by an increase in the pore water pressure associated with the rising in the groundwater level in channel deposits;a continuous water supply from the upper stream by the surface flow might have induced this saturation.The third type was associated with changes in the downstream topography caused by erosion.The flow velocity of most surges was less than 3 m s^(-1) and they usually stopped within 100 m from the initiation point.Surges with abundant pore fluid had a higher flow velocity(about 3- 5 m s^(-1)) and could travel for alonger duration.Our observations indicate that the surface flow plays an important role in the initiation of debris flows on channel deposits and talus slopes.
基金financially supported by the CAS Pioneer Hundred Talents Programpthe Institute of Mountain Hazards and Environment(Grant No.SDS-135-1705)+1 种基金support from the National Natural Science Foundation of China(Grant No.41771021,41471429,and 41790443)the National Key Research and Development Program of China(Grant No.2017YFD0800501)
文摘Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the Yindongzi gully in Dujiangyan City, Sichuan province, China with scaled-down model experiments. We set rainfall intensity and slope angle as dominating parameters and carried out 20 scaled-down model tests under artificial rainfall conditions. The experiments set four slope angles(32°, 34°, 37°, 42°) and five rainfall intensities(60 mm/h, 90 mm/h, 120 mm/h, 150 mm/h, and 180 mm/h) treatments. The characteristic variables in the experiments, such as, rainfall duration, pore water pressure, moisture content, surface inclination, and volume were monitored. The experimental results revealed the failure mode of loose slope material and the process of slope debris flow initiation, as well as the relationship between the surface deformation and the physical parameters of experimental model. A traditional rainfall intensity-duration early warning model(I-D model) was firstly established by using a mathematical regression analysis, and it was then improved into ISD model and ISM model(Here, I is rainfall Intensity, S is Slope angle, D is rainfall Duration, and M is Moisture content). The warning model can provide reliable early warning of slope debris flow initiation.
基金supported by the key international collaborative project of Natural Science Foundation of China(No.41520104002)
文摘The initiation mechanism of debris flow is regarded as the key step in understanding the debrisflow processes of occurrence, development and damage. Moreover, migration, accumulation and blocking effects of fine particles in soil will lead to soil failure and then develop into debris flow. Based on this hypothesis and considering the three factors of slope gradient, rainfall duration and rainfall intensity, 16 flume experiments were designed using the method of orthogonal design and completed in a laboratory. Particle composition changes in slope toe, volumetric water content, fine particle movement characteristics and soil failure mechanism were analyzed and understood as follows: the soil has complex, random and unstable structures, which causes remarkable pore characteristics of poor connectivity, non-uniformity and easy variation. The major factors that influence fine particle migration are rainfall intensity and slope. Rainfall intensity dominates particle movement, whereby high intensity rainfall induces a large number of mass movement and sharp fluctuation, causing more fine particles to accumulate at the steep slope toe. The slope toe plays an important role in water collection and fine particleaccumulation. Both fine particle migration and coarse particle movement appears similar fluctuation. Fine particle migration is interrupted in unconnected pores, causing pore blockage and fine particle accumulation, which then leads to the formation of a weak layer and further soil failure or collapses. Fine particle movement also causes debris flow formation in two ways: movement on the soil surface and migration inside the soil. The results verify the hypothesis that the function of fine particle migration in soil failure process is conducive for further understanding the formation mechanism of soil failure and debris flow initiation.
基金supported by the National Natural Science Foundation of China (Grant Nos.50979103 and 40901007)
文摘The phenomenon of debris flow is intermediate between mass movement and solid transport. Flows can be sudden, severe and destructive. Understanding debris flow erosion processes is the key to providing geomorphic explanations, but progress has been limited because the physical-mechanical properties, movement laws and erosion characteristics are different from those of sediment-laden flow. Using infinite slope theory, this research examines the process and mechanism of downcutting erosion over a moveable bed in a viscous debris flow gully. It focuses specifically on the scour depth and the critical slope for viscous debris flow,and formulas for both calculations are presented.Both scour depth and the critical conditions of downcutting erosion are related to debris flow properties(sand volume concentration and flow depth) and gully properties(longitudinal slope,viscous and internal friction angle of gully materials,and coefficient of kinetic friction). In addition, a series of flume experiments was carried out to characterize the scouring process of debris flows with different properties. The calculated values agreed well with the experimental data. These theoretical formulas are reasonable, and using infinite slope theory to analyze down cutting erosion from viscous debris flow is feasible.
基金supported by the National Natural Science Foundation of China(Grant No.51275250)the Natural Science Foundation of Jiangsu Province(Grant No.BK2010457)the Agricultural Machinery Foundation of Jiangsu Province(Grant No.GXZ14003)
文摘A constitutive model on the evolution of debris flow with and without a barrier was established based on the theory of the Bingham model. A certain area of the Laoshan Mountain in Nanjing, Jiangsu Province, in China was chosen for experimental study, and the slope sliding and debris flow detection system was utilized. The change curve of the soil moisture content was attained, demonstrating that the moisture content of the shallow soil layer increases faster than that of the deep soil layer, and that the growth rate of the soil moisture content of the steep slope is large under the first weak rainfall, and that of the gentle slope is significantly affected by the second heavy rainfall. For the steep slope, slope sliding first occurs on the upper slope surface under heavy rainfall and further develops along the top platform and lower slope surface, while under weak rainfall the soil moisture content at the lower part of the slope first increases because of the high runoff velocity, meaning that failure occurring there is more serious. When a barrier was placed at a high position on a slope, debris flow was separated and distributed early and had less ability to carry solids, and the variation of the greatest depth of erosion pits on soil slopes was not significant.
基金funded by the Ministry of Science and Technology of the People’s Republic of China (Grant No.2011BAK12B02)the Science and Technology Department of Sichuan Province(Grant No.2011SZ0190)
文摘Large spoil tips from reconstruction works as a result of the Wenchuan Earthquake in China are new debris flow hazards to the human society.However,there is a lack of detailed comparative study on debris flow initiation in different spoil materials.This paper describes a series of tests and analyses on debris flow characteristics(initiation,scale and mechanism) at six sites with limestone and sandstone materials near the Dujiangyan area.Research shows the limestone spoil contains debris flow prone clay content with high concentration of montmorillonite(highly expandable).In addition,limestone spoil is of such a low permeability that water mainly concentrates in the upper surface layer.Those factors make it easy for the increase of pore water pressure,decline of internal friction and conhesion force,leading to the occurence of large debris flows.In contrast,the sandstone spoil is less problematic and causes no major debris flow threats.Based on our research on the mechanism,the"stereometric drainage"method is sucessfully applied to control limestone spoil debris flows.
基金financially supported by the Project of China Special Project of Basic Work of Science and Technology (2011FY110100-2)Project of the 12th Five-year National Sci-Tech Support Plan of China (grant No. 2011BAK12B09)+1 种基金the National Science Foundation of China (grant No. 41072269)China Geological Survey (grant No. 1212010914025)
文摘Geohazards induced by the Lushan Ms 7.0 earthquake on April 20, 2013 mainly have four types: collapse, landslide, slope debris flow, and sand-soil liquefaction. These geohazards mainly occurred near the epicenter, on steep slopes or below cliffs in high mountain and deep valley areas, and at or near fault ends. They have no obvious relationships to active faults, but their relationships to the weathering degree and structures of rock and rock mass are obvious. Compared with the Wenchuan Ms 8.0 earthquake on May 12, 2008, the Lnshan earthquake is relatively little in the impact force and the throwing amount. All of these should be related to the magnitude of this earthquake, not very large but not very little. This character of the Lushan earthquake would make some processes uncompleted so as to bring about some concealed geohazards. Finally, in order to deal with challenges presented by such conceal geohazards, some brief recommendations are put forward.
文摘To reveal the gravitational erosion process in the headstream area of Jiangjia Ravine, continuous observation was conduced duing the rainy season. The observation and research show that the change of water content of the bank slope lags the precipitation process, the infiltration water concentrates mainly in the shallow layer of the bank slope, also the bank slope was unsaturated, the floods and debris flows in the gully down cut the gully bed, and scour the foot of the bank slope. These results in many collapses, which is the main type of gravitational erosion process, and it provides large amounts of loose solid materials for the eruption of debris flows.
文摘A methodology is developed for interactive risk assessment of physical infrastructure and spatially distributed response systems subjected to debris flows.The proposed framework is composed of three components,namely geotechnical engineering,geographical information systems and disaster management.With the integration of slope stability analysis,hazard scenario and susceptibility,geological conditions are considered as temporary static data,while meteorological conditions are treated as dynamic data with a focus on typhoons.In this research,the relevant parameters required for database building are defined,and the procedures for building the geological database and meteorological data sets are explained.Based on the concepts and data sets,Nantou and Hualien in Taiwan are used as the areas for case studies.
基金supported by the National Basic Research Program of China (973 program) "Activity characteristics and formation rules of secondary mountain hazard of earthquake" (Grant No.2008CB425802)Key Program of Chinese Academy of Sciences (No.KZCX2-YW-302-02)
文摘When water seeps upwards through a saturated soil layer,the soil layer may become instability and water films occur and develop.Water film serves as a natural sliding surface because of its very small friction.Accordingly,debris flow may happen.To investigate this phenomenon,a pseudothree-phase media is presented first.Then discontinuity method is used to analyze the expansion velocity of water film.Finally,perturbation method is used to analyze the case that a water flow is forced to seep upwards through the soil layer while the movement of the skeleton may be neglected relative to that of water.The theoretical evolutions of pore pressure gradient,effective stress,water velocity,the porosity and the eroded fine grains are obtained.It can be seen clearly that with the erosion and redeposited of fine grains,permeability at some positions in the soil layer becomes smaller and smaller and,the pore pressure gradient becomes bigger and bigger,while the effective stress becomes smaller and smaller.When the effective stress equals zero,e.f.liquefaction,the water film occurs.It is shown also that once a water film occurs,it will be expanded in a speed of U(t)(1-ε).
基金This study was supported by DST-SERB under fast track scheme(No.SR/FTP/ETA-0062/2011)The authors would like to acknowledge with thanks,the financial support rendered by DST for the research.
文摘Debris flow is one of the most destructive water related mass movements that affects the development of mountain terrains.A reliable assessment of debris flow susceptibility requires adequate data,but in most developing countries like India,there is a dearth of such extensive scientific records.This study presents a novel approach for assessing debris flow using the analytical network process(ANP)in data insufficient regions.A stretch of hill road between Kumburvayal and Vadakaunchi along the Kodaikkanal-Palani Traffic Corridor(M171)was considered for this study.Five significant factors including the nature of slope forming materials,hydraulic conductivity,slope,vegetation,and drainage density were identified from intense field surveys and inspections in order to assess the susceptibility of the terrain to debris flow.This model endorsed the interdependencies between the selected factors.The resulting debris flow susceptibility map delineated regions highly prone to debris flow occurrences,which constituted nearly 23%of the selected road stretch.