This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China...This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.展开更多
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI...Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.展开更多
A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li^(+)and SO_(4)^(2-)on the fluorescence intensity and t...A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li^(+)and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle ...Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period.展开更多
Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empi...Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empirically analyze the impact of manufacturing servitization on urban sulfur dioxide(SO_(2))emissions within the classical Environmental Kuznets Curve(EKC)framework.The results show that manufacturing servitization can reduce SO_(2) emissions.Producer servitization and consumptive services can both significantly reduce industrial SO_(2) emissions.Transportation and warehousing servitization,information servitization,leasing,and commercial servitization,technology research and development servitization significantly reduce SO_(2) emissions;technology research and development servitization,in particular,have the largest influence coefficient,while the reduction effect of servitization in the wholesale and retail and finance sectors is not significant.The study also found that servitization reduced the SO_(2) emissions through technological innovation and industrial structure upgrading.展开更多
Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduct...Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduction using the optimal catalyst(0.06 mol%doping of Sm in Fe_(2)O_(3))was nearly 11 times higher than that for pure Fe_(2)O_(3),when calculated based on specific surface area.Furthermore,the Fe_(0.94)Sm_(0.06)O_(x)catalyst maintains>83%NO_(x)conversion for 168 h at a high space velocity in the presence of SO_(2)and H_(2)O at 250℃.A substantial amount of surface-adsorbed oxygen was generated on the surface of Fe_(0.94)Sm_(0.06)O_(x),which promoted NO oxidation and the subsequent fast reaction between NO_(x)and NH_(3).The adsorption and activation of NH_(3)was also enhanced by Sm doping.In addition,Sm doping facilitated the decomposition of NH_(4)HSO_(4)on the surface of Fe_(0.94)Sm_(0.06)O_(x),resulting in its high activity and stability in the presence of SO_(2)+H_(2)O.展开更多
21Cr2NiMo steel is widely used to stabilize offshore oil platforms;however,it suffers from stress-corrosion cracking(SCC).Herein,we studied the SCC behavior of 21Cr2NiMo steel in SO_(2)-polluted coastal atmospheres.El...21Cr2NiMo steel is widely used to stabilize offshore oil platforms;however,it suffers from stress-corrosion cracking(SCC).Herein,we studied the SCC behavior of 21Cr2NiMo steel in SO_(2)-polluted coastal atmospheres.Electrochemical tests revealed that the addition of SO_(2) increased the corrosion current.Rust characterization showed that SO_(2) addition densified the corrosion products and promoted pitting.Furthermore,slow strain rate tests demonstrated a high susceptibility to SCC in high SO_(2) contents.Fracture morphologies revealed that the stress-corrosion cracks initiated at corrosion pits and the crack propagation showed transgranular and intergranular cracking modes.In conclusion,SCC is mix-controlled by anodic dissolution and hydrogen embrittlement mechanisms.展开更多
The effects of SO_(2) on an one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NO_(x) by NH_(3) were examined.The addition of SO_(2) inhibited NO_(x) conversion significantly below 300℃,while no effect...The effects of SO_(2) on an one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NO_(x) by NH_(3) were examined.The addition of SO_(2) inhibited NO_(x) conversion significantly below 300℃,while no effect on NO_(x) conversion was observed above 300℃.TGA,TPD,and XPS results showed that the deactivation was caused by the formation of(NH4)2SO_(4),SO_(2) chemisorption on the isolated Cu^(2+)ion sites,as well as the formation of CuSO_(4)-like species.Among them,the site-blocking effect of(NH_(4))_(2)SO_(4) on Cu^(2+)was the primary reason for deactivation.Fortunately,89%of deNO_(x) activity of the poisoned catalyst was recovered after thermal treatment at 500℃ in air,where(NH_(4))_(2)SO_(4) was completely decomposed.The activity was further recovered with regeneration temperature increasing to 600℃,removing the adsorbed SO_(2) on the Cu^(2+)sites.The regeneration at 600℃ could not recover the activity completely,because of the high stability of CuSO_(4)-like species.展开更多
The 2024 anodized aluminum alloy film was sealed by KAl(SO_(4))_(2)solution and the effect of sealing on corrosion resistance was investigated by means of potentiodynamic polarization curves,electrochemical impedance ...The 2024 anodized aluminum alloy film was sealed by KAl(SO_(4))_(2)solution and the effect of sealing on corrosion resistance was investigated by means of potentiodynamic polarization curves,electrochemical impedance spectroscopy,and X-ray photoelectron spectroscopy.The experimental results show that the optimal parameters for KAl(SO_(4))_(2)sealing are 35℃,with the pH value of 8,the concentration of 8 g/L,and the sealing time of 3 min.The corrosion resistance of the KAl(SO_(4))_(2)sealed sample can be significantly improved than that of unsealed one,and is obviously superior to that of the conventional hydrothermal sealed sample.Furthermore,X-ray photoelectron spectroscopy demonstrates that more Al(OH)_(3)will be formed in the process of KAl(SO_(4))_(2)sealing,which will shrink the diameter of the microporous and therefore results in the excellent corrosion resistance.展开更多
The effects of SO_2 on the initial atmospheric corrosion of AZ91D magnesiumalloy were investigated in laboratory. Met-allographic observation, SEM (Scanning ElectronMicroscopy), XRD (X-ray Diffraction) and XPS (X-ray ...The effects of SO_2 on the initial atmospheric corrosion of AZ91D magnesiumalloy were investigated in laboratory. Met-allographic observation, SEM (Scanning ElectronMicroscopy), XRD (X-ray Diffraction) and XPS (X-ray Proton Spectrograph) were used to analyze anddiscuss the initial surface morphology of corrosion layers and corrosion products. The corrosionrate of the alloy increases with increasing the content of SO_2. The initial attack has thecharacteristics of localized corrosion and preferentially concentrates on a phase. MgO and Mg(OH)_2form at first, which provide a protective layer, then the existence of SO_2 decreases the pH of thethin solution on the alloy, accelerates dissolution process, and promotes the formation of MgSO_3centre dot 6H_2O and MgSO_4 centre dot 6H_2O, meanwhile cracks were found on the corrosion productswith corrosion continuation. These soluble corrosion products and the cracks provide the paths forfiltering oxygen and corrosion pollutants into the matrix, which results in severe localizedcorrosion and the loss of protective function of film.展开更多
Theoretical investigations on the insertion reaction mechanisms of three- membered-ring silylenoid H2 Si Li F with GeH 3R(R = F, OH, NH2) have been systematically carried out by combined density functional theory(...Theoretical investigations on the insertion reaction mechanisms of three- membered-ring silylenoid H2 Si Li F with GeH 3R(R = F, OH, NH2) have been systematically carried out by combined density functional theory(DFT) and ab initio quantum chemical calculations. The geometries of all stationary points for these reactions were optimized using the B3 LYP method and then the QCISD method was used to calculate the single-point energies. The calculated results indicate that, there are one precursor complex(Q), one transition state(TS), and one intermediate(IM) which connect the reactants and the products along the potential energy surface. The insertion reactions of three-membered-ring silylenoid with Ge H3 R proceed in a concerted manner, forming H2RSi-Ge H3 and Li F. The calculated potential energy barriers of the three reactions are 29.17, 30.90, and 54.07 k J/mol, and the reaction energies for the three reactions are –127.05, –116.91, and –103.31 k J/mol, respectively. The insertion reactions in solvents are similar to those in vacuum. Under the same situation, the insertion reactions should occur easily in the following order: GeH 3-F GeH 3-OH GeH 3-NH2. The elucidations of the mechanism of these insertion reactions provided a new mode of silicon-germanium bond formation.展开更多
Effect of SO_2-enriched air on the turnip moth, Agrotis segetum Schiff.was investigated by rearing the larvae on rape leaves that had been exposed to 40 or 80 ppb of the air pollutant in field fumigation chambers. An ...Effect of SO_2-enriched air on the turnip moth, Agrotis segetum Schiff.was investigated by rearing the larvae on rape leaves that had been exposed to 40 or 80 ppb of the air pollutant in field fumigation chambers. An examination on the 11th day showed that the larvae in both treatments survived more, developed markedly faster, their fresh v/eig'ht and mean relative growth rate were significantly greater than those of control insect. Improvement of their growth and development resulted in decrease of total larval duration by 0.5 - 1.0 day. Pupal and adult performances were little affected by SO2 level to which larval food plant was exposed. Possible reason responsible for enhanced growth and development of the insect species was discussed.展开更多
针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进IN...针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。展开更多
SDA (Structural Decomposition Analysis) model was applied to analyze the driving factors of embodied carbon and SO_(2) emissions transferred in Shanxi during 2007-2012 based on the input-output model from the perspect...SDA (Structural Decomposition Analysis) model was applied to analyze the driving factors of embodied carbon and SO_(2) emissions transferred in Shanxi during 2007-2012 based on the input-output model from the perspectives of region and industry.The results showed that the change of embodied carbon emissions and embodied SO_(2) emissions of Shanxi and other regions were hindered by the carbon (sulfur) emissions strength effect,but promoted by the intermediate (final) demand scale effect,the intermediate (final) structure effect and the input-output structure effect.The carbon emissions strength effect had a significant contribution to reducing the embodied carbon emissions transferred from industries in Shanxi to other regions.The intermediate (final) demand scale effect was the driving factor to increase the embodied carbon emissions transferred from industries in Shanxi to other regions.The sulfur emissions strength effect was the only factor that reduced the embodied SO_(2) emissions transferred from Shanxi to other industries.The change of embodied carbon emissions from industries in other regions to Shanxi was hindered by the carbon emissions strength effect,but the input-output structure effect and final demand scale effect both increased the embodied carbon emissions from industries in other regions to Shanxi.The change of the embodied SO_(2) emissions transferred from industries in other regions to Shanxi was inhibited by the sulfur emissions strength effect,but the input-output structure effect,the intermediate demand structure effect and the final demand scale effect were both the driving force effect of increasing the embodied SO_(2) emissions transferred from industries in other regions to Shanxi.The corresponding suggestions and measures were put forward.展开更多
文摘This study aims to analysis the influence of economic growth(EG)and energy consumption(EC)on sulfur dioxide emissions(SE)in China.Accordingly,this study explores the link between EG,EC,and SE for 30 provinces in China over the span of 2000-2019.This study also analyzes cross-sectional dependence tests,panel unit root tests,Westerlund panel cointegration tests,Dumitrescu-Hurlin(D-H)causality tests.According to the test results,there is an inverted U-shaped association between EG and SE,and the assumption of the Environmental Kuznets Curve(EKC)is verified.The signs of EG and EC in the fixed effect(FE)and random effect(RE)methods are in line with those in the dynamic ordinary least squares(DOLS),fully modified ordinary least squares(FMOLS)and autoregressive distributed lag(ARDL)estimators.Moreover,the results verified that EC can obviously positive impact the SE.To reduce SE in China,government and policymakers can improve air quality by developing cleaner energy sources and improving energy efficiency.This requires the comprehensive use of policies,regulations,economic incentives,and public participation to promote sustainable development.
基金supported by the National Natural Science Foundation of China(nos.22168012 and 22208070)the Key Laboratory of Carbon-based Energy Molecular Chemical Utilization Technology in Guizhou Province(no.2023008)the Guizhou Province Outstanding Young Scientific and Technological Talents Program(no.YQK2023007).
文摘Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.
基金Funded by the Science and Technology Bureau of Chengdu City(No.2022-YF05-02119-SN)。
文摘A series of tungstate red phosphors K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)were successfully prepared by sol-gel method,and the effects of the introduction of Li^(+)and SO_(4)^(2-)on the fluorescence intensity and thermal quenching properties of the prepared K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors were investigated.The X-ray diffraction data show that the prepared(Li^(+)and SO_(4)^(2-))-doped KEu(WO_(4))_(2)phosphors have a monoclinic tetragonal structure.In addition,the emission intensities of all the observed emission peaks change significantly with the increase of Li~+doping concentration,especially the intensity of the emission peaks at 615 nm fluctuated significantly and reached the maximum at x=0.3 and y=0.2.The K_(1-x)Li_(x)Eu(WO_(4))_(2-y)(SO_(4))_(y)phosphors are found to have the highest fluorescence intensity at x=0.3 and y=0.2.Moreover,the K_(0.7)Li_(0.3)Eu(WO_(4))_(1.8)(SO_(4))_(0.2)phosphor has better thermal quenching properties and luminescence efficiency,and the experimental results indicates that the fluorescence intensity and thermal burst performance of KEu(WO_(4))_(2)red phosphor could be effectively improved by using low-cost bionic doping of Li^(+)and SO_(4)^(2-).
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金the Indonesian Collaborative Research(RKI)2022:598/IT2/T/HK.00.01/2022Center of Volcanology and Geological Hazard Mitigation of Indonesia for the data and financial support of this research。
文摘Mount Semeru,an active volcano in East Java,Indonesia,erupted on December 4,2021,following extreme rainfall that caused an avalanche of hot pyroclastic flows and lava.The tropospheric conditions and dominant particle components in the atmosphere can be monitored using Global Navigation Satellite System(GNSS)technology and remote sensing satellites.GNSS signal propagation delay in Precise Point Positioning(PPP)processing can be used to determine Zenith Tropospheric Delay(ZTD)and Precipitable Water Vapor(PWV)variables so that atmospheric conditions can be generated.In addition,by using remote sensing satellite data,it is possible to obtain rainfall data with high temporal resolution as well as the dominant particle and gas content values during eruptions.During the eruption period,the high value of PWV was dominated by the high intensity of precipitation during the rainy season.High rainfall before the eruption caused activity inside the mountain to increase,which occurred in avalanche type eruption.Apart from that,the atmosphere around Semeru was also dominated by SO_(2)content,which spreaded for tens of kilometers.SO_(2)content began to be detected significantly by remote sensing sensors on December 7,2021.In this study,deformation and atmospheric monitoring were also carried out using low-cost GNSS at the Semeru Monitoring Station on September 9-15,2022.The results of the ZTD and ZWD values show the dominance of the wet component,which is directly proportional to rainfall activity in this period.
基金funded by the National Social Science Foundation of China[Grant No.23CGJ011 and Grant No.22BGJ029]National Natural Science Foundation of China[Grant No.72263015]Science and Technology Youth Project of the Jiangxi Provincial Department of Education[Grant No.GJJ200530].
文摘Using China’s regional input–output table,the paper constructs indicators of manufacturing servitization,matches manufacturing servitization at the regional level with city data,and uses spatial econometrics to empirically analyze the impact of manufacturing servitization on urban sulfur dioxide(SO_(2))emissions within the classical Environmental Kuznets Curve(EKC)framework.The results show that manufacturing servitization can reduce SO_(2) emissions.Producer servitization and consumptive services can both significantly reduce industrial SO_(2) emissions.Transportation and warehousing servitization,information servitization,leasing,and commercial servitization,technology research and development servitization significantly reduce SO_(2) emissions;technology research and development servitization,in particular,have the largest influence coefficient,while the reduction effect of servitization in the wholesale and retail and finance sectors is not significant.The study also found that servitization reduced the SO_(2) emissions through technological innovation and industrial structure upgrading.
文摘Sm-doped Fe_(2)O_(3)catalysts,with a homogeneous distribution of Sm in Fe_(2)O_(3)nanoparticles,were synthesized using a citric acid-assisted sol-gel method.Kinetic studies show that the reaction rate for NO_(x)reduction using the optimal catalyst(0.06 mol%doping of Sm in Fe_(2)O_(3))was nearly 11 times higher than that for pure Fe_(2)O_(3),when calculated based on specific surface area.Furthermore,the Fe_(0.94)Sm_(0.06)O_(x)catalyst maintains>83%NO_(x)conversion for 168 h at a high space velocity in the presence of SO_(2)and H_(2)O at 250℃.A substantial amount of surface-adsorbed oxygen was generated on the surface of Fe_(0.94)Sm_(0.06)O_(x),which promoted NO oxidation and the subsequent fast reaction between NO_(x)and NH_(3).The adsorption and activation of NH_(3)was also enhanced by Sm doping.In addition,Sm doping facilitated the decomposition of NH_(4)HSO_(4)on the surface of Fe_(0.94)Sm_(0.06)O_(x),resulting in its high activity and stability in the presence of SO_(2)+H_(2)O.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-MP-18-002)。
文摘21Cr2NiMo steel is widely used to stabilize offshore oil platforms;however,it suffers from stress-corrosion cracking(SCC).Herein,we studied the SCC behavior of 21Cr2NiMo steel in SO_(2)-polluted coastal atmospheres.Electrochemical tests revealed that the addition of SO_(2) increased the corrosion current.Rust characterization showed that SO_(2) addition densified the corrosion products and promoted pitting.Furthermore,slow strain rate tests demonstrated a high susceptibility to SCC in high SO_(2) contents.Fracture morphologies revealed that the stress-corrosion cracks initiated at corrosion pits and the crack propagation showed transgranular and intergranular cracking modes.In conclusion,SCC is mix-controlled by anodic dissolution and hydrogen embrittlement mechanisms.
基金Financial supports from the Natural Science Foundation of Tianjin 19JCTPJC42300.
文摘The effects of SO_(2) on an one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NO_(x) by NH_(3) were examined.The addition of SO_(2) inhibited NO_(x) conversion significantly below 300℃,while no effect on NO_(x) conversion was observed above 300℃.TGA,TPD,and XPS results showed that the deactivation was caused by the formation of(NH4)2SO_(4),SO_(2) chemisorption on the isolated Cu^(2+)ion sites,as well as the formation of CuSO_(4)-like species.Among them,the site-blocking effect of(NH_(4))_(2)SO_(4) on Cu^(2+)was the primary reason for deactivation.Fortunately,89%of deNO_(x) activity of the poisoned catalyst was recovered after thermal treatment at 500℃ in air,where(NH_(4))_(2)SO_(4) was completely decomposed.The activity was further recovered with regeneration temperature increasing to 600℃,removing the adsorbed SO_(2) on the Cu^(2+)sites.The regeneration at 600℃ could not recover the activity completely,because of the high stability of CuSO_(4)-like species.
基金Funded by the National Natural Science Foundation of China(No.12175107)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY220030)
文摘The 2024 anodized aluminum alloy film was sealed by KAl(SO_(4))_(2)solution and the effect of sealing on corrosion resistance was investigated by means of potentiodynamic polarization curves,electrochemical impedance spectroscopy,and X-ray photoelectron spectroscopy.The experimental results show that the optimal parameters for KAl(SO_(4))_(2)sealing are 35℃,with the pH value of 8,the concentration of 8 g/L,and the sealing time of 3 min.The corrosion resistance of the KAl(SO_(4))_(2)sealed sample can be significantly improved than that of unsealed one,and is obviously superior to that of the conventional hydrothermal sealed sample.Furthermore,X-ray photoelectron spectroscopy demonstrates that more Al(OH)_(3)will be formed in the process of KAl(SO_(4))_(2)sealing,which will shrink the diameter of the microporous and therefore results in the excellent corrosion resistance.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50171011 )the 973 Science Foundation of China (No. 19990650).
文摘The effects of SO_2 on the initial atmospheric corrosion of AZ91D magnesiumalloy were investigated in laboratory. Met-allographic observation, SEM (Scanning ElectronMicroscopy), XRD (X-ray Diffraction) and XPS (X-ray Proton Spectrograph) were used to analyze anddiscuss the initial surface morphology of corrosion layers and corrosion products. The corrosionrate of the alloy increases with increasing the content of SO_2. The initial attack has thecharacteristics of localized corrosion and preferentially concentrates on a phase. MgO and Mg(OH)_2form at first, which provide a protective layer, then the existence of SO_2 decreases the pH of thethin solution on the alloy, accelerates dissolution process, and promotes the formation of MgSO_3centre dot 6H_2O and MgSO_4 centre dot 6H_2O, meanwhile cracks were found on the corrosion productswith corrosion continuation. These soluble corrosion products and the cracks provide the paths forfiltering oxygen and corrosion pollutants into the matrix, which results in severe localizedcorrosion and the loss of protective function of film.
基金supported by the National Natural Science Foundation Committee of China(No.21103145)the Natural Science Foundation of Shandong Province(No.ZR2009BQ006)+3 种基金the Fund for Doctor of Yantai University(No.HY05B30)the Special Foundation of Youth Academic Backbone of Yantai Universitysupport by the Open fund(sklssm201418)of the State Key Laboratory of Supramolecular Structure and Materials,Jilin Universitythe Graduate Innovation Foundation of Yantai University,GIFYTU
文摘Theoretical investigations on the insertion reaction mechanisms of three- membered-ring silylenoid H2 Si Li F with GeH 3R(R = F, OH, NH2) have been systematically carried out by combined density functional theory(DFT) and ab initio quantum chemical calculations. The geometries of all stationary points for these reactions were optimized using the B3 LYP method and then the QCISD method was used to calculate the single-point energies. The calculated results indicate that, there are one precursor complex(Q), one transition state(TS), and one intermediate(IM) which connect the reactants and the products along the potential energy surface. The insertion reactions of three-membered-ring silylenoid with Ge H3 R proceed in a concerted manner, forming H2RSi-Ge H3 and Li F. The calculated potential energy barriers of the three reactions are 29.17, 30.90, and 54.07 k J/mol, and the reaction energies for the three reactions are –127.05, –116.91, and –103.31 k J/mol, respectively. The insertion reactions in solvents are similar to those in vacuum. Under the same situation, the insertion reactions should occur easily in the following order: GeH 3-F GeH 3-OH GeH 3-NH2. The elucidations of the mechanism of these insertion reactions provided a new mode of silicon-germanium bond formation.
文摘Effect of SO_2-enriched air on the turnip moth, Agrotis segetum Schiff.was investigated by rearing the larvae on rape leaves that had been exposed to 40 or 80 ppb of the air pollutant in field fumigation chambers. An examination on the 11th day showed that the larvae in both treatments survived more, developed markedly faster, their fresh v/eig'ht and mean relative growth rate were significantly greater than those of control insect. Improvement of their growth and development resulted in decrease of total larval duration by 0.5 - 1.0 day. Pupal and adult performances were little affected by SO2 level to which larval food plant was exposed. Possible reason responsible for enhanced growth and development of the insect species was discussed.
文摘针对火电机组SO_(2)排放质量浓度的影响因素众多,难以准确预测的问题,提出一种改进向量加权平均(weighted mean of vectors,INFO)算法与双向长短期记忆(bi-directional long short term memory,Bi-LSTM)神经网络相结合的预测模型(改进INFO-Bi-LSTM模型)。采用Circle混沌映射和反向学习产生高质量初始化种群,引入自适应t分布提升INFO算法跳出局部最优解和全局搜索的能力。选取改进INFO-Bi-LSTM模型和多种预测模型对炉内外联合脱硫过程中4种典型工况下的SO_(2)排放质量浓度进行预测,将预测结果进行验证对比。结果表明:改进INFO算法的寻优能力得到提升,并且改进INFO-Bi-LSTM模型精度更高,更加适用于SO_(2)排放质量浓度的预测,可为变工况下的脱硫控制提供控制理论支撑。
文摘SDA (Structural Decomposition Analysis) model was applied to analyze the driving factors of embodied carbon and SO_(2) emissions transferred in Shanxi during 2007-2012 based on the input-output model from the perspectives of region and industry.The results showed that the change of embodied carbon emissions and embodied SO_(2) emissions of Shanxi and other regions were hindered by the carbon (sulfur) emissions strength effect,but promoted by the intermediate (final) demand scale effect,the intermediate (final) structure effect and the input-output structure effect.The carbon emissions strength effect had a significant contribution to reducing the embodied carbon emissions transferred from industries in Shanxi to other regions.The intermediate (final) demand scale effect was the driving factor to increase the embodied carbon emissions transferred from industries in Shanxi to other regions.The sulfur emissions strength effect was the only factor that reduced the embodied SO_(2) emissions transferred from Shanxi to other industries.The change of embodied carbon emissions from industries in other regions to Shanxi was hindered by the carbon emissions strength effect,but the input-output structure effect and final demand scale effect both increased the embodied carbon emissions from industries in other regions to Shanxi.The change of the embodied SO_(2) emissions transferred from industries in other regions to Shanxi was inhibited by the sulfur emissions strength effect,but the input-output structure effect,the intermediate demand structure effect and the final demand scale effect were both the driving force effect of increasing the embodied SO_(2) emissions transferred from industries in other regions to Shanxi.The corresponding suggestions and measures were put forward.