In recent years, many methods have been used to find the exact solutions of nonlinear partial differential equations. One of them is called the first integral method, which is based on the ring theory of commutative a...In recent years, many methods have been used to find the exact solutions of nonlinear partial differential equations. One of them is called the first integral method, which is based on the ring theory of commutative algebra. In this paper, exact travelling wave solutions of the Non-Boussinesq wavepacket model and the (2 + 1)-dimensional Zoomeron equation are studied by using the first integral method. From the solving process and results, the first integral method has the characteristics of simplicity, directness and effectiveness about solving the exact travelling wave solutions of nonlinear partial differential equations. In other words, tedious calculations can be avoided by Maple software;the solutions of more accurate and richer travelling wave solutions are obtained. Therefore, this method is an effective method for solving exact solutions of nonlinear partial differential equations.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is ...A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.展开更多
We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law ...We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.展开更多
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho...The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.展开更多
A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control syst...A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.展开更多
This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether me...This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether method and the Poisson method. Then the solution of the higher-order equation can be obtained by integrating the solution of the second-order equation.展开更多
Live line measurement methods can reduce the loss of power outages and eliminate interference. There are three live line measurement methods including integral method, differential method and algebraic method. A simul...Live line measurement methods can reduce the loss of power outages and eliminate interference. There are three live line measurement methods including integral method, differential method and algebraic method. A simulation model of?two coupled parallel transmission lines spanning on the same towers is built in PSCAD and the calculation errors of these three methods are compared with different sampling frequencies by using of Matlab. The effect of harmonic on calculation is also involved. The simulation results indicate that harmonic has the least effect on the algebraic method which provides stable result and small error.展开更多
We reduce the initial value problem for the generalized Schroedinger equation with piecewise-constant leading coefficient to the system of Volterra type integral equations and construct new useful integral representat...We reduce the initial value problem for the generalized Schroedinger equation with piecewise-constant leading coefficient to the system of Volterra type integral equations and construct new useful integral representations for the fundamental solutions of the Schroedinger equation. We also investigate some significant properties of the kernels of these integral representations. The integral representations of fundamental solutions enable to obtain the basic integral equations, which are a powerful tool for solving inverse spectral problems.展开更多
In this paper,we propose general strain-and stress-driven two-phase local/nonlocal piezoelectric integral models,which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of n...In this paper,we propose general strain-and stress-driven two-phase local/nonlocal piezoelectric integral models,which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of nanostructures.The nonlocal piezoelectric model is transformed from integral to an equivalent differential form with four constitutive boundary conditions due to the difficulty in solving intergro-differential equations directly.The nonlocal piezoelectric integral models are used to model the static bending of the Euler-Bernoulli piezoelectric beam on the assumption that the nonlocal elastic and piezoelectric parameters are coincident with each other.The governing differential equations as well as constitutive and standard boundary conditions are deduced.It is found that purely strain-and stress-driven nonlocal piezoelectric integral models are ill-posed,because the total number of differential orders for governing equations is less than that of boundary conditions.Meanwhile,the traditional nonlocal piezoelectric differential model would lead to inconsistent bending response for Euler-Bernoulli piezoelectric beam under different boundary and loading conditions.Several nominal variables are introduced to normalize the governing equations and boundary conditions,and the general differential quadrature method(GDQM)is used to obtain the numerical solutions.The results from current models are validated against results in the literature.It is clearly established that a consistent softening and toughening effects can be obtained for static bending of the Euler-Bernoulli beam based on the general strain-and stress-driven local/nonlocal piezoelectric integral models,respectively.展开更多
An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an i...An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.展开更多
We introduce the concept of <i>q</i>-calculus in quantum geometry. This involves the <i>q</i>-differential and <i>q</i>-integral operators. With these, we study the basic rules gove...We introduce the concept of <i>q</i>-calculus in quantum geometry. This involves the <i>q</i>-differential and <i>q</i>-integral operators. With these, we study the basic rules governing <i>q</i>-calculus as compared with the classical Newton-Leibnitz calculus, and obtain some important results. We introduce the reduced <i>q</i>-differential transform method (R<i>q</i>DTM) for solving partial <i>q</i>-differential equations. The solution is computed in the form of a convergent power series with easily computable coefficients. With the help of some test examples, we discover the effectiveness and performance of the proposed method and employing MathCAD 14 software for computation. It turns out that when <i>q</i> = 1, the solution coincides with that for the classical version of the given initial value problem. The results demonstrate that the R<i>q</i>DTM approach is quite efficient and convenient.展开更多
The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff...The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.展开更多
The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under...The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.展开更多
In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equat...In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.展开更多
This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewrit...This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewritten as 2n first-order differential equations. Secondly, the corresponding partial differential equations are obtained by potential integration method and the solution is expressed as a complete integral. Finally, the integral of the system is obtained.展开更多
An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise in...An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise integration method (PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix. The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE. Based ,on the error analysis, the criterion for choosing two parameters of the PIM is given. Three kinds of IPIMs for solving the DRE are proposed. The numerical examples machine accuracy solutions. show that the IPIM is stable and gives the展开更多
Previous studies have shown that Eringen’s differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates.Based on the nonlocal integral models along...Previous studies have shown that Eringen’s differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates.Based on the nonlocal integral models along the radial and circumferential directions,we propose nonlocal integral polar models in this work.The proposed strainand stress-driven two-phase nonlocal integral polar models are applied to model the axisymmetric bending of circular microplates.The governing differential equations and boundary conditions(BCs)as well as constitutive constraints are deduced.It is found that the purely strain-driven nonlocal integral polar model turns to a traditional nonlocal differential polar model if the constitutive constraints are neglected.Meanwhile,the purely strain-and stress-driven nonlocal integral polar models are ill-posed,because the total number of the differential orders of the governing equations is less than that of the BCs plus constitutive constraints.Several nominal variables are introduced to simplify the mathematical expression,and the general differential quadrature method(GDQM)is applied to obtain the numerical solutions.The results from the current models(CMs)are compared with the data in the literature.It is clearly established that the consistent softening and toughening effects can be obtained for the strain-and stress-driven local/nonlocal integral polar models,respectively.The proposed two-phase local/nonlocal integral polar models(TPNIPMs)may provide an efficient method to design and optimize the plate-like structures for microelectro-mechanical systems.展开更多
In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The ev...In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.展开更多
In this paper, we are concerned with a class of second-order nonlinear differential equations with damping term. By using the generalized Riccati technique and the integral averaging technique of Philos-type, two new ...In this paper, we are concerned with a class of second-order nonlinear differential equations with damping term. By using the generalized Riccati technique and the integral averaging technique of Philos-type, two new oscillation criteria are obtained for every solution of the equations to be oscillatory, which extend and improve some known results in the literature recently.展开更多
文摘In recent years, many methods have been used to find the exact solutions of nonlinear partial differential equations. One of them is called the first integral method, which is based on the ring theory of commutative algebra. In this paper, exact travelling wave solutions of the Non-Boussinesq wavepacket model and the (2 + 1)-dimensional Zoomeron equation are studied by using the first integral method. From the solving process and results, the first integral method has the characteristics of simplicity, directness and effectiveness about solving the exact travelling wave solutions of nonlinear partial differential equations. In other words, tedious calculations can be avoided by Maple software;the solutions of more accurate and richer travelling wave solutions are obtained. Therefore, this method is an effective method for solving exact solutions of nonlinear partial differential equations.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].
文摘A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate.
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Natural Sciences and Engineering Research Council of Canada(No.NSERC RGPIN-2023-03227)。
文摘We present a study on the dynamic stability of porous functionally graded(PFG)beams under hygro-thermal loading.The variations of the properties of the beams across the beam thicknesses are described by the power-law model.Unlike most studies on this topic,we consider both the bending deformation of the beams and the hygro-thermal load as size-dependent,simultaneously,by adopting the equivalent differential forms of the well-posed nonlocal strain gradient integral theory(NSGIT)which are strictly equipped with a set of constitutive boundary conditions(CBCs),and through which both the stiffness-hardening and stiffness-softening effects of the structures can be observed with the length-scale parameters changed.All the variables presented in the differential problem formulation are discretized.The numerical solution of the dynamic instability region(DIR)of various bounded beams is then developed via the generalized differential quadrature method(GDQM).After verifying the present formulation and results,we examine the effects of different parameters such as the nonlocal/gradient length-scale parameters,the static force factor,the functionally graded(FG)parameter,and the porosity parameter on the DIR.Furthermore,the influence of considering the size-dependent hygro-thermal load is also presented.
文摘The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.
文摘A PID parameters tuning and optimization method for a turbine engine based on the simplex search method was proposed. Taking time delay of combustion and actuator into account, a simulation model of a PID control system for a turbine engine was developed. A performance index based on the integral of absolute error (IAE) was given as an objective function of optimization. In order to avoid the sensitivity that resulted from the initial values of the simplex search method, the traditional Ziegler-Nichols method was used to tune PID parameters to obtain the initial values at first, then the simplex search method was applied to optimize PID parameters for the turbine engine. Simulation results indicate that the simplex search method is a reasonable and effective method for PID controller parameters tuning and optimization.
基金Project supported by the National Natural Science Foundation of China(Grant No10572021)Doctoral Programme Foundation of Institution of Higher Education of China(Grant No20040007022)
文摘This paper studies integration of a higher-order differential equation which can be reduced to a second-order ordinary differential equation. The solution of the second-order equation can be obtained by the Noether method and the Poisson method. Then the solution of the higher-order equation can be obtained by integrating the solution of the second-order equation.
文摘Live line measurement methods can reduce the loss of power outages and eliminate interference. There are three live line measurement methods including integral method, differential method and algebraic method. A simulation model of?two coupled parallel transmission lines spanning on the same towers is built in PSCAD and the calculation errors of these three methods are compared with different sampling frequencies by using of Matlab. The effect of harmonic on calculation is also involved. The simulation results indicate that harmonic has the least effect on the algebraic method which provides stable result and small error.
文摘We reduce the initial value problem for the generalized Schroedinger equation with piecewise-constant leading coefficient to the system of Volterra type integral equations and construct new useful integral representations for the fundamental solutions of the Schroedinger equation. We also investigate some significant properties of the kernels of these integral representations. The integral representations of fundamental solutions enable to obtain the basic integral equations, which are a powerful tool for solving inverse spectral problems.
基金the National Natural Science Foundation of China(No.12172169)the Scholarship of the China Scholarship Council(No.202106830093)。
文摘In this paper,we propose general strain-and stress-driven two-phase local/nonlocal piezoelectric integral models,which can distinguish the difference of nonlocal effects on the elastic and piezoelectric behaviors of nanostructures.The nonlocal piezoelectric model is transformed from integral to an equivalent differential form with four constitutive boundary conditions due to the difficulty in solving intergro-differential equations directly.The nonlocal piezoelectric integral models are used to model the static bending of the Euler-Bernoulli piezoelectric beam on the assumption that the nonlocal elastic and piezoelectric parameters are coincident with each other.The governing differential equations as well as constitutive and standard boundary conditions are deduced.It is found that purely strain-and stress-driven nonlocal piezoelectric integral models are ill-posed,because the total number of differential orders for governing equations is less than that of boundary conditions.Meanwhile,the traditional nonlocal piezoelectric differential model would lead to inconsistent bending response for Euler-Bernoulli piezoelectric beam under different boundary and loading conditions.Several nominal variables are introduced to normalize the governing equations and boundary conditions,and the general differential quadrature method(GDQM)is used to obtain the numerical solutions.The results from current models are validated against results in the literature.It is clearly established that a consistent softening and toughening effects can be obtained for static bending of the Euler-Bernoulli beam based on the general strain-and stress-driven local/nonlocal piezoelectric integral models,respectively.
基金Sponsored by the National Natural Science Foundation of China(10572021)
文摘An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.
文摘We introduce the concept of <i>q</i>-calculus in quantum geometry. This involves the <i>q</i>-differential and <i>q</i>-integral operators. With these, we study the basic rules governing <i>q</i>-calculus as compared with the classical Newton-Leibnitz calculus, and obtain some important results. We introduce the reduced <i>q</i>-differential transform method (R<i>q</i>DTM) for solving partial <i>q</i>-differential equations. The solution is computed in the form of a convergent power series with easily computable coefficients. With the help of some test examples, we discover the effectiveness and performance of the proposed method and employing MathCAD 14 software for computation. It turns out that when <i>q</i> = 1, the solution coincides with that for the classical version of the given initial value problem. The results demonstrate that the R<i>q</i>DTM approach is quite efficient and convenient.
基金The National Natural Science Foundation of China(No.10972151)
文摘The idea of the gradient method for integrating the dynamical equations of a nonconservative system presented by Vujanovic is transplanted to a Birkhoffian system, which is a new method for the integration of Birkhoff's equations. First, the differential equations of motion of the Birkhoffian system are written out. Secondly, 2n Birkhoff's variables are divided into two parts, and assume that a part of the variables is the functions of the remaining part of the variables and time. Thereby, the basic quasi-linear partial differential equations are established. If a complete solution of the basic partial differential equations is sought out, the solution of the problem is given by a set of algebraic equations. Since one can choose n arbitrary Birkhoff's variables as the functions of n remains of variables and time in a specific problem, the method has flexibility. The major difficulty of this method lies in finding a complete solution of the basic partial differential equation. Once one finds the complete solution, the motion of the systems can be obtained without doing further integration. Finally, two examples are given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021, 10572021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘The Hamilton-Jacobi method for solving ordinary differential equations is presented in this paper. A system of ordinary differential equations of first order or second order can be expressed as a Hamilton system under certain conditions. Then the Hamilton-Jacobi method is used in the integration of the Hamilton system and the solution of the original ordinary differential equations can be found. Finally, an example is given to illustrate the application of the result.
文摘In this paper, we propose and analyze some schemes of the integral collocation formulation based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay differential equations with variable coefficients. The properties of the Legendre polynomials are used to reduce the proposed problems to the solution of non-linear system of algebraic equations using Newton iteration method. We give numerical results to satisfy the accuracy and the applicability of the proposed schemes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)
文摘This paper is intended to apply the potential integration method to the differential equations of the Birkhoffian system. The method is that, for a given Birkhoffian system, its differential equations are first rewritten as 2n first-order differential equations. Secondly, the corresponding partial differential equations are obtained by potential integration method and the solution is expressed as a complete integral. Finally, the integral of the system is obtained.
基金Project supported by the National Natural Science Foundation of China(Nos.10902020 and 10721062)
文摘An improved precise integration method (IPIM) for solving the differential Riccati equation (DRE) is presented. The solution to the DRE is connected with the exponential of a Hamiltonian matrix, and the precise integration method (PIM) for solving the DRE is connected with the scaling and squaring method for computing the exponential of a matrix. The error analysis of the scaling and squaring method for the exponential of a matrix is applied to the PIM of the DRE. Based ,on the error analysis, the criterion for choosing two parameters of the PIM is given. Three kinds of IPIMs for solving the DRE are proposed. The numerical examples machine accuracy solutions. show that the IPIM is stable and gives the
基金Project supported by the National Natural Science Foundation of China(No.12172169)the Research Fund of State Key Laboratory of Mechanicsthe Priority Academic Program Development of Jiangsu Higher Education Institutions of China。
文摘Previous studies have shown that Eringen’s differential nonlocal model would lead to the ill-posed mathematical formulation for axisymmetric bending of circular microplates.Based on the nonlocal integral models along the radial and circumferential directions,we propose nonlocal integral polar models in this work.The proposed strainand stress-driven two-phase nonlocal integral polar models are applied to model the axisymmetric bending of circular microplates.The governing differential equations and boundary conditions(BCs)as well as constitutive constraints are deduced.It is found that the purely strain-driven nonlocal integral polar model turns to a traditional nonlocal differential polar model if the constitutive constraints are neglected.Meanwhile,the purely strain-and stress-driven nonlocal integral polar models are ill-posed,because the total number of the differential orders of the governing equations is less than that of the BCs plus constitutive constraints.Several nominal variables are introduced to simplify the mathematical expression,and the general differential quadrature method(GDQM)is applied to obtain the numerical solutions.The results from the current models(CMs)are compared with the data in the literature.It is clearly established that the consistent softening and toughening effects can be obtained for the strain-and stress-driven local/nonlocal integral polar models,respectively.The proposed two-phase local/nonlocal integral polar models(TPNIPMs)may provide an efficient method to design and optimize the plate-like structures for microelectro-mechanical systems.
文摘In this paper the Black Scholes differential equation is transformed into a parabolic heat equation by appropriate change in variables. The transformed equation is semi-discretized by the Method of Lines (MOL). The evolving system of ordinary differential equations (ODEs) is integrated numerically by an L-stable trapezoidal-like integrator. Results show accuracy of relative maximum error of order 10–10.
文摘In this paper, we are concerned with a class of second-order nonlinear differential equations with damping term. By using the generalized Riccati technique and the integral averaging technique of Philos-type, two new oscillation criteria are obtained for every solution of the equations to be oscillatory, which extend and improve some known results in the literature recently.