Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main po...Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main potato production areas. Unear classification was used to conduct the technology classification. According to the technical attributes and characteristics, the potato technologies of storage and transportation in producing area were classified with large classes, middle classes, small classes and subclasses, into the agricultural production area processing and storage engineering technology system, to reveal the structure and functions. Mean- while, the widely used technologies were integrated and summarized into 5 principal technology integration programs, which could be used for the technology integration of the new management subjects such as planting professional cooperatives, family farms, enterprises and so on.展开更多
Subject Code:B03With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Yang Weishen(杨维慎)and Prof.Zhu Xuefeng(朱雪峰)at the State Key L...Subject Code:B03With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Yang Weishen(杨维慎)and Prof.Zhu Xuefeng(朱雪峰)at the State Key Laboratory of Catalysis,Dalian Institute of Physical Chemistry,Chinese Academy of Sciences,proposed a new catalytic membrane reactor for one-step producing the ammonia synthesis gas(ASG,H_2/展开更多
AIM: To investigate reprogramming of human adipose tissue derived stem cells into insulin producing cells using non-integrated lentivirus harboring PDX1 gene.METHODS: In this study, human adipose tissue derived stem c...AIM: To investigate reprogramming of human adipose tissue derived stem cells into insulin producing cells using non-integrated lentivirus harboring PDX1 gene.METHODS: In this study, human adipose tissue derived stem cells(hADSCs) were obtained from abdominal adipose tissues by liposuction, selected by plastic adhesion, and characterized by flow cytometric analysis.Human ADSCs were differentiated into adipocytes and osteocytes using differentiating medium to confirm their multipotency. Non-integrated lentiviruses harboring PDX1(Non-integrated LV-PDX1) were constructed using specific plasmids(pLV-HELP, pMD2G, LV-105-PDX1-1).Then, hADSCs were transduced with non-integrated LVPDX1. After transduction, ADSCsPDX1+were cultured in high glucose DMEM medium supplement by B27, nicotinamide and βFGF for 21 d. Expressions of PDX1 andinsulin were detected at protein level by immunofluorescence analysis. Expressions of PDX1, neurogenin3(Ngn3), glucagon, glucose transporter2(Glut2) and somatostatin as specific marker genes were investigated at mRNA level by quantitative RT-PCR. Insulin secretion of hADSCsPDX1+in the high-glucose medium was detected by electrochemiluminescence test. Human ADSCsPDX1+were implanted into hyperglycemic rats.RESULTS: Human ADSCs exhibited their fibroblast-like morphology and made colonies after 7-10 d of culture.Determination of hADSCs identified by FACS analysis showed that hADSCs were positive for mesenchymal cell markers and negative for hematopoietic cell markers that guaranteed the lack of hematopoietic contamination. In vitro differentiation of hADSCs into osteocytes and adipocytes were detected by Alizarin red and Oil red O staining and confirmed their multilineage differentiation ability. Transduced hADSCs+PDX1became round and clusters in the differentiation medium. The appropriate expression of PDX1 and insulin proteins was confirmed using immunocytochemistry analysis.Significant expressions of PDX1, Ngn3, glucagon, Glut2and somatostatin were detected by quantitative RTPCR. hADSCsPDX1+revealed the glucose sensing ability by expressing Glut2 when they were cultured in the medium containing high glucose concentration. The insulin secretion of hADSCsPDX1+in the high glucose medium was 2.32 μU/mL. hADSCsPDX1+implantation into hyperglycemic rats cured it two days after injection by reducing blood glucose levels from 485 mg/dL to the normal level.CONCLUSION: Human ADSCs can differentiate into IPCs by non-integrated LV-PDX1 transduction and have the potential to be used as a resource in type 1 diabetes cell therapy.展开更多
基金Supported by the National Key Research and Development Program of China(2016YFD0401301)~~
文摘Considering the development of potato (Solanum tuberosum) industry in China, the existing technologies of potato storage and transportation in the produc- ing area were analyzed through investigation on four main potato production areas. Unear classification was used to conduct the technology classification. According to the technical attributes and characteristics, the potato technologies of storage and transportation in producing area were classified with large classes, middle classes, small classes and subclasses, into the agricultural production area processing and storage engineering technology system, to reveal the structure and functions. Mean- while, the widely used technologies were integrated and summarized into 5 principal technology integration programs, which could be used for the technology integration of the new management subjects such as planting professional cooperatives, family farms, enterprises and so on.
文摘Subject Code:B03With the support by the National Natural Science Foundation of China and the Chinese Academy of Sciences,the research team led by Prof.Yang Weishen(杨维慎)and Prof.Zhu Xuefeng(朱雪峰)at the State Key Laboratory of Catalysis,Dalian Institute of Physical Chemistry,Chinese Academy of Sciences,proposed a new catalytic membrane reactor for one-step producing the ammonia synthesis gas(ASG,H_2/
基金Supported by National Institute of Genetic Engineering and Biotechnology,Ministry of Science Research and Technology,Tehran,Iran
文摘AIM: To investigate reprogramming of human adipose tissue derived stem cells into insulin producing cells using non-integrated lentivirus harboring PDX1 gene.METHODS: In this study, human adipose tissue derived stem cells(hADSCs) were obtained from abdominal adipose tissues by liposuction, selected by plastic adhesion, and characterized by flow cytometric analysis.Human ADSCs were differentiated into adipocytes and osteocytes using differentiating medium to confirm their multipotency. Non-integrated lentiviruses harboring PDX1(Non-integrated LV-PDX1) were constructed using specific plasmids(pLV-HELP, pMD2G, LV-105-PDX1-1).Then, hADSCs were transduced with non-integrated LVPDX1. After transduction, ADSCsPDX1+were cultured in high glucose DMEM medium supplement by B27, nicotinamide and βFGF for 21 d. Expressions of PDX1 andinsulin were detected at protein level by immunofluorescence analysis. Expressions of PDX1, neurogenin3(Ngn3), glucagon, glucose transporter2(Glut2) and somatostatin as specific marker genes were investigated at mRNA level by quantitative RT-PCR. Insulin secretion of hADSCsPDX1+in the high-glucose medium was detected by electrochemiluminescence test. Human ADSCsPDX1+were implanted into hyperglycemic rats.RESULTS: Human ADSCs exhibited their fibroblast-like morphology and made colonies after 7-10 d of culture.Determination of hADSCs identified by FACS analysis showed that hADSCs were positive for mesenchymal cell markers and negative for hematopoietic cell markers that guaranteed the lack of hematopoietic contamination. In vitro differentiation of hADSCs into osteocytes and adipocytes were detected by Alizarin red and Oil red O staining and confirmed their multilineage differentiation ability. Transduced hADSCs+PDX1became round and clusters in the differentiation medium. The appropriate expression of PDX1 and insulin proteins was confirmed using immunocytochemistry analysis.Significant expressions of PDX1, Ngn3, glucagon, Glut2and somatostatin were detected by quantitative RTPCR. hADSCsPDX1+revealed the glucose sensing ability by expressing Glut2 when they were cultured in the medium containing high glucose concentration. The insulin secretion of hADSCsPDX1+in the high glucose medium was 2.32 μU/mL. hADSCsPDX1+implantation into hyperglycemic rats cured it two days after injection by reducing blood glucose levels from 485 mg/dL to the normal level.CONCLUSION: Human ADSCs can differentiate into IPCs by non-integrated LV-PDX1 transduction and have the potential to be used as a resource in type 1 diabetes cell therapy.