Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u...Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.展开更多
This manuscript critically evaluates the randomized controlled trial(RCT)conducted by Phiri et al,which assessed the effectiveness of virtual reality(VR)training for psychiatric staff in reducing restrictive practices...This manuscript critically evaluates the randomized controlled trial(RCT)conducted by Phiri et al,which assessed the effectiveness of virtual reality(VR)training for psychiatric staff in reducing restrictive practices(RPs).Specifically,this RCT investigated the impact of VR on the handling of aggressive patients by psychiatric staff compared to traditional training methods.Despite significant reductions in perceived discrimination in the VR group,there were no major improvements in self-efficacy or anxiety levels.The system usability scale rated the VR platform highly,but it did not consistently outperform traditional training methods.Indeed,the study shows the potential for VR to reduce RPs,although fluctuations in RP rates suggest that external factors,such as staff turnover,influenced the outcomes.This manuscript evaluates the study’s methodology,results,and broader implications for mental health training.Additionally,it highlights the need for more comprehensive research to establish VR as a standard tool for psychiatric staff education,focusing on patient care outcomes and real-world applicability.Finally,this study explores future research di-rections,technological improvements,and the potential impact of policies that could enhance the integration of VR in clinical training.展开更多
BACKGROUND Traditional paper-based preoperative patient education is a struggle for new nurses and requires extensive training.In this situation,virtual reality technology can help the new nurses.Despite its potential...BACKGROUND Traditional paper-based preoperative patient education is a struggle for new nurses and requires extensive training.In this situation,virtual reality technology can help the new nurses.Despite its potential benefits,there are studies on patient satisfaction but there is limited information on the usability of virtual reality(VR)technology for new nurses in giving preoperative education to patients.AIM To investigate the impact on satisfaction,usability,and burnout of a system using VR technology in preoperative patient education.METHODS The study involved 20 nurses from the plastic surgery ward and 80 patients admitted between April and May 2019.Each nurse taught four patients:Two using traditional verbal education and two using virtual reality.The System Usability Scale,After-Scenario Questionnaire,and Maslach Burnout Inventory(MBI)were employed to evaluate the impact of these education methods.RESULTS The VR education groups showed a statistically higher satisfaction than the traditional verbal education groups.Among the three subscales of the MBI,emotional exhaustion and personal accomplishment improved statistically significantly.VR was also better in terms of usability.CONCLUSION This study suggests VR enhances usability and reduces burnout in nurses,but further research is needed to assess its impact on depersonalization and objective measures like stress and heart rate.展开更多
This paper explores the transformative impact of virtual worlds, augmented reality (AR), and the metaverse in the healthcare sector. It delves into the ways these technologies are reshaping patient care, medical educa...This paper explores the transformative impact of virtual worlds, augmented reality (AR), and the metaverse in the healthcare sector. It delves into the ways these technologies are reshaping patient care, medical education, and research, while also addressing the challenges and opportunities they present. The paper highlights the potential benefits of these technologies and emphasizes the need for comprehensive regulatory frameworks and ethical guidelines to ensure responsible integration. Finally it outlines their transformative impact and discusses the challenges and opportunities they present for the future of healthcare provision.展开更多
Virtual reality(VR)and augmented reality(AR)technologies have become increasingly important instruments in the field of art education as information technology develops quickly,transforming the conventional art educat...Virtual reality(VR)and augmented reality(AR)technologies have become increasingly important instruments in the field of art education as information technology develops quickly,transforming the conventional art education approach.The present situation,benefits,difficulties,and potential development tendencies of VR and AR technologies in art education will be investigated in this study.By means of literature analysis and case studies,this paper presents the fundamental ideas of VR and AR technologies together with their several uses in art education,namely virtual museums,interactive art production,art history instruction,and distant art cooperation.The research examines how these technologies might improve students’immersion,raise their learning motivation,and encourage innovative ideas and multidisciplinary cooperation.Practical application concerns including technology costs,content production obstacles,user acceptance,privacy,and ethical questions also come under discussion.At last,the article offers ideas and suggestions to help VR and AR technologies be effectively integrated into art education through teacher training,curriculum design,technology infrastructure development,and multidisciplinary cooperation.This study offers useful advice for teachers of art as well as important references for legislators and technology developers working together to further the creative growth of art education.展开更多
This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in...This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in-depth analysis of digital technology,the study outlines its important role in landscape design,especially in the application of plant configuration.The current application status of virtual reality technology in landscape design is discussed,as well as how interactive design can enhance user experience and participation.Furthermore,the achievements and challenges of digital technology in landscape design are summarized.Finally,it proposes future research directions and suggestions,aiming to provide new ideas and methods for practice and research in the field of landscape design and promote the further application and development of digital technology in landscape design.展开更多
The construction of early childhood curriculum resources serves as a vital vehicle and precondition for the implementation of collective teaching activities in kindergartens.However,traditional curriculum resources ba...The construction of early childhood curriculum resources serves as a vital vehicle and precondition for the implementation of collective teaching activities in kindergartens.However,traditional curriculum resources based on graphic language or the linguistic descriptions of early childhood educators often fail to provide children with an immersive experience during collective teaching activities,leading to a lack of initiative and interest in learning.This paper discusses the methods for building a kindergarten curriculum resource library and,based on this foundation,employs virtual reality technology for three-dimensional modeling of the library to enrich the curriculum resources in kindergartens.Furthermore,this paper proposes to train early childhood educators in virtual reality technology to enhance their abilities to operate and utilize virtual reality equipment,which can emphasize the children’s central role in the learning process,better achieve educational goals,and improve teaching outcomes.展开更多
With the rapid development of information technology,virtual reality(VR)technology has gradually transformed from the concept of science fiction to reality,and become an important driving force for innovation and deve...With the rapid development of information technology,virtual reality(VR)technology has gradually transformed from the concept of science fiction to reality,and become an important driving force for innovation and development in the field of education.As an immersive technology,VR can break the limitations of time and space in traditional teaching modes and create an immersive learning experience for learners.This technology can not only make the learning process more vivid and interesting,but also improve students’learning efficiency and initiative through interaction and immersion.Especially in the field of distance education,the application of VR technology is redefining teaching methods,increasing the efficiency of educational resource sharing,and enhancing the fairness and accessibility of education.This paper will take VR technology as the starting point,analyze its basic principles and technical characteristics,and deeply discuss the diversified practices of VR in distance education,including teaching scene simulation,interactive experience optimization,other aspects of educational resources equity,etc.展开更多
With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation pract...With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization.展开更多
A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads t...A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.展开更多
BACKGROUND Restrictive practices(RPs)are defined by measures linked to physical and chemical restraints to reduce the movement or control behaviours during any emergency.Seclusion is an equal part of RPs intended to i...BACKGROUND Restrictive practices(RPs)are defined by measures linked to physical and chemical restraints to reduce the movement or control behaviours during any emergency.Seclusion is an equal part of RPs intended to isolate and reduce the sensory stimulation to safeguard the patient and those within the vicinity.Using interventions by way of virtual reality(VR)could assist with reducing the need for RPs as it could help reduce anxiety or agitation by way of placing users into realistic and immersive environments.This could also aid staff to and change current RPs.AIM To assess the feasibility and effectiveness of using a VR platform to provide reduction in RP training.METHODS A randomised controlled feasibility study,accompanied by evaluations at 1 month and 6 months,was conducted within inpatient psychiatric wards at Southern Health National Health Service Foundation Trust,United Kingdom.Virti VR scenarios were used on VR headsets to provide training on reducing RPs in 3 inpatient psychiatric wards.Outcome measures included general self-efficacy scale,generalised anxiety disorder assessment 7(GAD-7),Burnout Assessment Tool 12,the Everyday Discrimination Scale,and the Compassionate Engagement and Action Scale.RESULTS Findings revealed statistically significant differences between the VR and treatment as usual groups,in the Everyday Discrimination Scale items Q8 and Q9:P=0.023 and P=0.040 respectively,indicating higher levels of perceived discrimination in the VR group.There were no significant differences between groups in terms of general self-efficacy,generalised anxiety disorder assessment 9,and Burnout Assessment Tool 12 scores.A significant difference was observed within the VR group for compassionate engagement from others(P=0.005)over time.Most respondents recorded System Usability Scale scores above 70,with an average score of 71.79.There was a significant reduction in rates of RPs in the VR group vs treatment as usual group with a fluctuating variability observed in the VR group likely due to external factors not captured in the study.CONCLUSION Ongoing advancement of VR technology enables the possibility of creating scenarios and simulations tailored to healthcare environments that empower staff by providing more comprehensive and effective training for handling situations.展开更多
In the context of Industry 4.0,a paradigm shift from traditional industrial manipulators to Collaborative Robots(CRs)is ongoing,with the latter serving ever more closely humans as auxiliary tools in many production pr...In the context of Industry 4.0,a paradigm shift from traditional industrial manipulators to Collaborative Robots(CRs)is ongoing,with the latter serving ever more closely humans as auxiliary tools in many production processes.In this scenario,continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry.For example,6G could play a prominent role due to its human-centric view of the industrial domains.In particular,its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin(DT)-and eXtended Reality(XR)-based telepresence.In this work,a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed.The approach encompasses demanding data flows(e.g.,point cloud-based streaming of collaborating users and robotic environment),with network latency and bandwidth constraints.Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.展开更多
After perusing the paper by Kim et al,I discovered that this is an interesting manuscript and a successful study.Virtual reality(VR)is an emerging and promising technology employed in the domain of medical practice an...After perusing the paper by Kim et al,I discovered that this is an interesting manuscript and a successful study.Virtual reality(VR)is an emerging and promising technology employed in the domain of medical practice and medical education over the past decade.In the era of big data,VR is constantly progressing in the fields of medical education and clinical diagnosis and treatment.As a novel scientific and technological tool,VR not only overcomes multiple limitations of the traditional medical teaching mode but also reduces the reliance on personnel and equipment.VR can simulate the real clinical situation,stimulate the enthusiasm of young doctors and nurses for clinical study,and simultaneously safeguard and promote medical safety and doctor-patient harmony.Favorable outcomes have been attained in clinical teaching and diagnosis and treatment activities.While enhancing the training conditions of medical cosmetics and elevating the level of clinical practice and teaching,the risks resulting from improper clinical diagnosis and treatment have been circumvented.All of this is evident and comprehensible.展开更多
Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligen...Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.展开更多
Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and eva...Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.展开更多
The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabil...The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and wo rldwide.We used data from the Web of Science Core Collection(WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information.In addition,the prospects for neurorehabilitation research in China are discussed.From 2010 to 2022,a total of 74,220 publications in neurorehabilitation were identified,with there being an overall upward tendency.During this period,the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neuro rehabilitation research in China.With the support of the National Natural Science Foundation of China,China has made some achievements in neurorehabilitation research.Research related to neurorehabilitation is believed to be making steady and significant progress in China.展开更多
[Objectives]To investigate the evidence-based effect of virtual reality-based mirror therapy system(VR-MT)on upper extremity function among stroke patients.[Methods]A systematic electronic searching of the Medline,Pub...[Objectives]To investigate the evidence-based effect of virtual reality-based mirror therapy system(VR-MT)on upper extremity function among stroke patients.[Methods]A systematic electronic searching of the Medline,PubMed,Web of Science and CNKI was initially performed up to June 10,2024.The risk of bias of the included studies was evaluated using RevMan 5.4 software based on the Cochrane Handbook for Systematic Reviews.The random-effects model or fixed-effects models was employed to estimate the standardized mean difference(SMD).The subgroup analyses were conducted exploring theVR-MT type(immersive or non-immersive)and comparing with MT or control group.[Results]In total 8 studies with a total of 273 stroke patients were included in this review.The pooled analysis of these trials showed a statistically significant enhancement inFMA-UE scores(6 studies,SMD=0.72,[95%CI 0.37 to 1.06];P<0.0001,I^(2)=31%)and Box and Block Test(BBT)(3 studies,SMD=0.49,[95%C/0.05 to 0.93];P=0.03,I^(2)=0%),rather than Manual Function Test(MFT)scores(3 studies,SMD=0.38,[95%CI-0.09 to 0.84];P=0.11,I^(2)=0%)following the application of reality-based mirror therapy.Additionally,the subgroup analysis results indicated that immersive VR-MT can significantly improve FMA-UE(5studies,SMD=0.73,[95%CI 0.24 to 1.23];P=0.004,I^(2)=43%).In contrast,the overall effect of non-immersive VR-MT was non-significant(2 studies,SMD=0.33,[95%CI-0.69 to 1.34];P=0.53,I^(2)=72%).[Conclusions]In this systematic review and meta-analysis,our findings indicate that immersiveVR-MT has the potential to improve upper extremity function among stroke patients.展开更多
This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approxi...This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.展开更多
With the development of virtual reality (VR) technology, more and more industries are beginning to integrate with VR technology. In response to the problem of not being able to directly render the lighting effect of C...With the development of virtual reality (VR) technology, more and more industries are beginning to integrate with VR technology. In response to the problem of not being able to directly render the lighting effect of Caideng in digital Caideng scenes, this article analyzes the lighting model. It combines it with the lighting effect of Caideng scenes to design an optimized lighting model algorithm that fuses the bidirectional transmission distribution function (BTDF) model. This algorithm can efficiently render the lighting effect of Caideng models in a virtual environment. And using image optimization processing methods, the immersive experience effect on the VR is enhanced. Finally, a Caideng roaming interactive system was designed based on this method. The results show that the frame rate of the system is stable during operation, maintained above 60 fps, and has a good immersive experience.展开更多
Interpreting activity is considered a high-anxiety activity due to its immediacy, multitasking, complexity of cognitive processing, and uncertainty of cognitive processing. Research has shown that interpreting anxiety...Interpreting activity is considered a high-anxiety activity due to its immediacy, multitasking, complexity of cognitive processing, and uncertainty of cognitive processing. Research has shown that interpreting anxiety, as the biggest emotional obstacle in the interpreting process, is the main emotional factor that leads to individual differences in interpreting. Students often claim to have fear or anxiety behaviors in interpreting exams, interpreting competitions, and interpreting classes. However, the research on interpreting teaching attaches importance to the cultivation of language knowledge, cultural knowledge, and interpreting skills, and does not pay enough attention to emotional factors such as motivation and anxiety in interpreting learning, which makes it difficult for the cultivated interpreters to meet the requirements of professional practice. In recent years, virtual reality technology (VR) has been gradually applied in the field of foreign language and interpreting teaching for creating a real, interactive and experiential language learning environment. Situated Learning Theory stresses that the fundamental mechanism for learning to take place is for individuals to participate in the real context in which knowledge is generated, and to realize the construction of knowledge through the interaction with the community of practice and the environment. Virtual reality technology can satisfy the needs of language learners for real contexts by providing learners with immersive, imaginative and interactive scenario simulations, and has a certain positive effect on alleviating learning anxiety. Therefore, relying on the virtual simulation course “United Nations Kubuqi International Desert Ecological Science and Technology Innovation International Volunteer Language Service Practical Training System”, this paper adopts a combination of quantitative and qualitative analyses to investigate the interpretation anxiety level of the interpreter trainees and the factors affecting them in the VR situation to help them discover effective responses to interpreter anxiety.展开更多
文摘Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field.
基金Supported by Basic Science Research Program Through the National Research Foundation of Korea(NRF)Funded by the Ministry of Education,No.NRF-RS-2023-00237287 and No.NRF-2021S1A5A8062526Local Government-University Cooperation-Based Regional Innovation Projects,No.2021RIS-003.
文摘This manuscript critically evaluates the randomized controlled trial(RCT)conducted by Phiri et al,which assessed the effectiveness of virtual reality(VR)training for psychiatric staff in reducing restrictive practices(RPs).Specifically,this RCT investigated the impact of VR on the handling of aggressive patients by psychiatric staff compared to traditional training methods.Despite significant reductions in perceived discrimination in the VR group,there were no major improvements in self-efficacy or anxiety levels.The system usability scale rated the VR platform highly,but it did not consistently outperform traditional training methods.Indeed,the study shows the potential for VR to reduce RPs,although fluctuations in RP rates suggest that external factors,such as staff turnover,influenced the outcomes.This manuscript evaluates the study’s methodology,results,and broader implications for mental health training.Additionally,it highlights the need for more comprehensive research to establish VR as a standard tool for psychiatric staff education,focusing on patient care outcomes and real-world applicability.Finally,this study explores future research di-rections,technological improvements,and the potential impact of policies that could enhance the integration of VR in clinical training.
基金Research Fund of Chungnam National University,Chungnam National University,the Ministry of Trade,Industry,and Energy,Korea,under the“Regional industry-based organization support program”,No.P0001940the Korea Institute for Advancement of Technology,and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute,funded by the Ministry of Health&Welfare,Republic of Korea,No.HI20C2088.
文摘BACKGROUND Traditional paper-based preoperative patient education is a struggle for new nurses and requires extensive training.In this situation,virtual reality technology can help the new nurses.Despite its potential benefits,there are studies on patient satisfaction but there is limited information on the usability of virtual reality(VR)technology for new nurses in giving preoperative education to patients.AIM To investigate the impact on satisfaction,usability,and burnout of a system using VR technology in preoperative patient education.METHODS The study involved 20 nurses from the plastic surgery ward and 80 patients admitted between April and May 2019.Each nurse taught four patients:Two using traditional verbal education and two using virtual reality.The System Usability Scale,After-Scenario Questionnaire,and Maslach Burnout Inventory(MBI)were employed to evaluate the impact of these education methods.RESULTS The VR education groups showed a statistically higher satisfaction than the traditional verbal education groups.Among the three subscales of the MBI,emotional exhaustion and personal accomplishment improved statistically significantly.VR was also better in terms of usability.CONCLUSION This study suggests VR enhances usability and reduces burnout in nurses,but further research is needed to assess its impact on depersonalization and objective measures like stress and heart rate.
文摘This paper explores the transformative impact of virtual worlds, augmented reality (AR), and the metaverse in the healthcare sector. It delves into the ways these technologies are reshaping patient care, medical education, and research, while also addressing the challenges and opportunities they present. The paper highlights the potential benefits of these technologies and emphasizes the need for comprehensive regulatory frameworks and ethical guidelines to ensure responsible integration. Finally it outlines their transformative impact and discusses the challenges and opportunities they present for the future of healthcare provision.
文摘Virtual reality(VR)and augmented reality(AR)technologies have become increasingly important instruments in the field of art education as information technology develops quickly,transforming the conventional art education approach.The present situation,benefits,difficulties,and potential development tendencies of VR and AR technologies in art education will be investigated in this study.By means of literature analysis and case studies,this paper presents the fundamental ideas of VR and AR technologies together with their several uses in art education,namely virtual museums,interactive art production,art history instruction,and distant art cooperation.The research examines how these technologies might improve students’immersion,raise their learning motivation,and encourage innovative ideas and multidisciplinary cooperation.Practical application concerns including technology costs,content production obstacles,user acceptance,privacy,and ethical questions also come under discussion.At last,the article offers ideas and suggestions to help VR and AR technologies be effectively integrated into art education through teacher training,curriculum design,technology infrastructure development,and multidisciplinary cooperation.This study offers useful advice for teachers of art as well as important references for legislators and technology developers working together to further the creative growth of art education.
基金2023 Campus Scientific Research Fund of Chongqing Institute of Engineering(Project number:2023xsky03)2023 Education and Teaching Reform Research Project of Chongqing Institute of Engineering(Project number:JY2023214)2023 First-class Curriculum Construction Project of Chongqing Institute of Engineering(Project number:KC20230103)。
文摘This study aims to explore the application of digital technology in landscape design,focusing on the research of virtual reality visualization and interactive design in the process of plant configuration.Through an in-depth analysis of digital technology,the study outlines its important role in landscape design,especially in the application of plant configuration.The current application status of virtual reality technology in landscape design is discussed,as well as how interactive design can enhance user experience and participation.Furthermore,the achievements and challenges of digital technology in landscape design are summarized.Finally,it proposes future research directions and suggestions,aiming to provide new ideas and methods for practice and research in the field of landscape design and promote the further application and development of digital technology in landscape design.
基金Educational Science Research Program of Anhui(JK22007)Key Project on Anhui Provincial Humanities and Social Sciences by Colleges and Universities(SK2019A0373)+1 种基金Teaching Research Project of Anhui Province(2022jyxm927)Jiangxi Postdoctoral Foundation(2021RC04)。
文摘The construction of early childhood curriculum resources serves as a vital vehicle and precondition for the implementation of collective teaching activities in kindergartens.However,traditional curriculum resources based on graphic language or the linguistic descriptions of early childhood educators often fail to provide children with an immersive experience during collective teaching activities,leading to a lack of initiative and interest in learning.This paper discusses the methods for building a kindergarten curriculum resource library and,based on this foundation,employs virtual reality technology for three-dimensional modeling of the library to enrich the curriculum resources in kindergartens.Furthermore,this paper proposes to train early childhood educators in virtual reality technology to enhance their abilities to operate and utilize virtual reality equipment,which can emphasize the children’s central role in the learning process,better achieve educational goals,and improve teaching outcomes.
文摘With the rapid development of information technology,virtual reality(VR)technology has gradually transformed from the concept of science fiction to reality,and become an important driving force for innovation and development in the field of education.As an immersive technology,VR can break the limitations of time and space in traditional teaching modes and create an immersive learning experience for learners.This technology can not only make the learning process more vivid and interesting,but also improve students’learning efficiency and initiative through interaction and immersion.Especially in the field of distance education,the application of VR technology is redefining teaching methods,increasing the efficiency of educational resource sharing,and enhancing the fairness and accessibility of education.This paper will take VR technology as the starting point,analyze its basic principles and technical characteristics,and deeply discuss the diversified practices of VR in distance education,including teaching scene simulation,interactive experience optimization,other aspects of educational resources equity,etc.
基金Jiangsu Province Vocational Education Teaching Reform Research Project“Construction and Application of Digital Teaching Factory Under the Background of Integration of Production and Education-A Case Study of Chemical Engineering Majors in Vocational Colleges”(ZYB141)Center for Scientific Research and Development in Higher Education Institutes,Ministry of Education 2022“Virtual Simulation Technology in Vocational Education and Teaching Innovation Application”Special Project(ZJXF2022320)。
文摘With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization.
文摘A catadioptric lens structure,also known as pancake lens,has been widely used in virtual reality(VR)displays to reduce the formfactor.However,the utilization of a half mirror(HM)to fold the optical path thrice leads to a significant optical loss.The theoretical maximum optical efficiency is merely 25%.To transcend this optical efficiency constraint while retaining the foldable characteristic inherent to traditional pancake optics,in this paper,we propose a theoretically lossless folded optical system to replace the HM with a nonreciprocal polarization rotator.In our feasibility demonstration experiment,we used a commercial Faraday rotator(FR)and reflective polarizers to replace the lossy HM.The theoretically predicted 100%efficiency can be achieved approximately by using two high-extinction-ratio reflective polarizers.In addition,we evaluated the ghost images using a micro-OLED panel in our imaging system.Indeed,the ghost images can be suppressed to undetectable level if the optics are with antireflection coating.Our novel pancake optical system holds great potential for revolutionizing next-generation VR displays with lightweight,compact formfactor,and low power consumption.
文摘BACKGROUND Restrictive practices(RPs)are defined by measures linked to physical and chemical restraints to reduce the movement or control behaviours during any emergency.Seclusion is an equal part of RPs intended to isolate and reduce the sensory stimulation to safeguard the patient and those within the vicinity.Using interventions by way of virtual reality(VR)could assist with reducing the need for RPs as it could help reduce anxiety or agitation by way of placing users into realistic and immersive environments.This could also aid staff to and change current RPs.AIM To assess the feasibility and effectiveness of using a VR platform to provide reduction in RP training.METHODS A randomised controlled feasibility study,accompanied by evaluations at 1 month and 6 months,was conducted within inpatient psychiatric wards at Southern Health National Health Service Foundation Trust,United Kingdom.Virti VR scenarios were used on VR headsets to provide training on reducing RPs in 3 inpatient psychiatric wards.Outcome measures included general self-efficacy scale,generalised anxiety disorder assessment 7(GAD-7),Burnout Assessment Tool 12,the Everyday Discrimination Scale,and the Compassionate Engagement and Action Scale.RESULTS Findings revealed statistically significant differences between the VR and treatment as usual groups,in the Everyday Discrimination Scale items Q8 and Q9:P=0.023 and P=0.040 respectively,indicating higher levels of perceived discrimination in the VR group.There were no significant differences between groups in terms of general self-efficacy,generalised anxiety disorder assessment 9,and Burnout Assessment Tool 12 scores.A significant difference was observed within the VR group for compassionate engagement from others(P=0.005)over time.Most respondents recorded System Usability Scale scores above 70,with an average score of 71.79.There was a significant reduction in rates of RPs in the VR group vs treatment as usual group with a fluctuating variability observed in the VR group likely due to external factors not captured in the study.CONCLUSION Ongoing advancement of VR technology enables the possibility of creating scenarios and simulations tailored to healthcare environments that empower staff by providing more comprehensive and effective training for handling situations.
基金funded by the European Commission through the H2020 project Hexa-X(Grant Agreement no.101015956).
文摘In the context of Industry 4.0,a paradigm shift from traditional industrial manipulators to Collaborative Robots(CRs)is ongoing,with the latter serving ever more closely humans as auxiliary tools in many production processes.In this scenario,continuous technological advancements offer new opportunities for further innovating robotics and other areas of next-generation industry.For example,6G could play a prominent role due to its human-centric view of the industrial domains.In particular,its expected dependability features will pave the way for new applications exploiting highly effective Digital Twin(DT)-and eXtended Reality(XR)-based telepresence.In this work,a novel application for the above technologies allowing two distant users to collaborate in the programming of a CR is proposed.The approach encompasses demanding data flows(e.g.,point cloud-based streaming of collaborating users and robotic environment),with network latency and bandwidth constraints.Results obtained by analyzing this approach from the viewpoint of network requirements in a setup designed to emulate 6G connectivity indicate that the expected performance of forthcoming mobile networks will make it fully feasible in principle.
文摘After perusing the paper by Kim et al,I discovered that this is an interesting manuscript and a successful study.Virtual reality(VR)is an emerging and promising technology employed in the domain of medical practice and medical education over the past decade.In the era of big data,VR is constantly progressing in the fields of medical education and clinical diagnosis and treatment.As a novel scientific and technological tool,VR not only overcomes multiple limitations of the traditional medical teaching mode but also reduces the reliance on personnel and equipment.VR can simulate the real clinical situation,stimulate the enthusiasm of young doctors and nurses for clinical study,and simultaneously safeguard and promote medical safety and doctor-patient harmony.Favorable outcomes have been attained in clinical teaching and diagnosis and treatment activities.While enhancing the training conditions of medical cosmetics and elevating the level of clinical practice and teaching,the risks resulting from improper clinical diagnosis and treatment have been circumvented.All of this is evident and comprehensible.
文摘Neuromuscular diseases present profound challenges to individuals and healthcare systems worldwide, profoundly impacting motor functions. This research provides a comprehensive exploration of how artificial intelligence (AI) technology is revolutionizing rehabilitation for individuals with neuromuscular disorders. Through an extensive review, this paper elucidates a wide array of AI-driven interventions spanning robotic-assisted therapy, virtual reality rehabilitation, and intricately tailored machine learning algorithms. The aim is to delve into the nuanced applications of AI, unlocking its transformative potential in optimizing personalized treatment plans for those grappling with the complexities of neuromuscular diseases. By examining the multifaceted intersection of AI and rehabilitation, this paper not only contributes to our understanding of cutting-edge advancements but also envisions a future where technological innovations play a pivotal role in alleviating the challenges posed by neuromuscular diseases. From employing neural-fuzzy adaptive controllers for precise trajectory tracking amidst uncertainties to utilizing machine learning algorithms for recognizing patient motor intentions and adapting training accordingly, this research encompasses a holistic approach towards harnessing AI for enhanced rehabilitation outcomes. By embracing the synergy between AI and rehabilitation, we pave the way for a future where individuals with neuromuscular disorders can access tailored, effective, and technologically-driven interventions to improve their quality of life and functional independence.
基金Supported by the Yunnan Key Laboratory of Opto-Electronic Information Technology,Postgraduate Research Innovation Fund of Yunnan Normal University (YJSJJ22-B79)the National Natural Science Foundation of China (62062069,62062070,62005235)。
文摘Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills.
文摘The National Natural Science Foundation of China is one of the major funding agencies for neuro rehabilitation research in China.This study reviews the frontier directions and achievements in the field of neurorehabilitation in China and wo rldwide.We used data from the Web of Science Core Collection(WoSCC) database to analyze the publications and data provided by the National Natural Science Foundation of China to analyze funding information.In addition,the prospects for neurorehabilitation research in China are discussed.From 2010 to 2022,a total of 74,220 publications in neurorehabilitation were identified,with there being an overall upward tendency.During this period,the National Natural Science Foundation of China has funded 476 research projects with a total funding of 192.38 million RMB to support neuro rehabilitation research in China.With the support of the National Natural Science Foundation of China,China has made some achievements in neurorehabilitation research.Research related to neurorehabilitation is believed to be making steady and significant progress in China.
文摘[Objectives]To investigate the evidence-based effect of virtual reality-based mirror therapy system(VR-MT)on upper extremity function among stroke patients.[Methods]A systematic electronic searching of the Medline,PubMed,Web of Science and CNKI was initially performed up to June 10,2024.The risk of bias of the included studies was evaluated using RevMan 5.4 software based on the Cochrane Handbook for Systematic Reviews.The random-effects model or fixed-effects models was employed to estimate the standardized mean difference(SMD).The subgroup analyses were conducted exploring theVR-MT type(immersive or non-immersive)and comparing with MT or control group.[Results]In total 8 studies with a total of 273 stroke patients were included in this review.The pooled analysis of these trials showed a statistically significant enhancement inFMA-UE scores(6 studies,SMD=0.72,[95%CI 0.37 to 1.06];P<0.0001,I^(2)=31%)and Box and Block Test(BBT)(3 studies,SMD=0.49,[95%C/0.05 to 0.93];P=0.03,I^(2)=0%),rather than Manual Function Test(MFT)scores(3 studies,SMD=0.38,[95%CI-0.09 to 0.84];P=0.11,I^(2)=0%)following the application of reality-based mirror therapy.Additionally,the subgroup analysis results indicated that immersive VR-MT can significantly improve FMA-UE(5studies,SMD=0.73,[95%CI 0.24 to 1.23];P=0.004,I^(2)=43%).In contrast,the overall effect of non-immersive VR-MT was non-significant(2 studies,SMD=0.33,[95%CI-0.69 to 1.34];P=0.53,I^(2)=72%).[Conclusions]In this systematic review and meta-analysis,our findings indicate that immersiveVR-MT has the potential to improve upper extremity function among stroke patients.
文摘This study unfolds an innovative approach aiming to address the critical role of building design in global energy consumption, focusing on optimizing the Window-to-Wall Ratio (WWR), since buildings account for approximately 30% of total energy consumed worldwide. The greatest contributors to energy expenditure in buildings are internal artificial lighting and heating and cooling systems. The WWR, determined by the proportion of the building’s glazed area to its wall area, is a significant factor influencing energy efficiency and minimizing energy load. This study introduces the development of a semi-automated computer model designed to offer a real-time, interactive simulation environment, fostering improving communication and engagement between designers and owners. The said model serves to optimize both the WWR and building orientation to align with occupants’ needs and expectations, subsequently reducing annual energy consumption and enhancing the overall building energy performance. The integrated model incorporates Building Information Modeling (BIM), Virtual Reality (VR), and Energy Analysis tools deployed at the conceptual design stage, allowing for the amalgamation of owners’ inputs in the design process and facilitating the creation of more realistic and effective design strategies.
文摘With the development of virtual reality (VR) technology, more and more industries are beginning to integrate with VR technology. In response to the problem of not being able to directly render the lighting effect of Caideng in digital Caideng scenes, this article analyzes the lighting model. It combines it with the lighting effect of Caideng scenes to design an optimized lighting model algorithm that fuses the bidirectional transmission distribution function (BTDF) model. This algorithm can efficiently render the lighting effect of Caideng models in a virtual environment. And using image optimization processing methods, the immersive experience effect on the VR is enhanced. Finally, a Caideng roaming interactive system was designed based on this method. The results show that the frame rate of the system is stable during operation, maintained above 60 fps, and has a good immersive experience.
文摘Interpreting activity is considered a high-anxiety activity due to its immediacy, multitasking, complexity of cognitive processing, and uncertainty of cognitive processing. Research has shown that interpreting anxiety, as the biggest emotional obstacle in the interpreting process, is the main emotional factor that leads to individual differences in interpreting. Students often claim to have fear or anxiety behaviors in interpreting exams, interpreting competitions, and interpreting classes. However, the research on interpreting teaching attaches importance to the cultivation of language knowledge, cultural knowledge, and interpreting skills, and does not pay enough attention to emotional factors such as motivation and anxiety in interpreting learning, which makes it difficult for the cultivated interpreters to meet the requirements of professional practice. In recent years, virtual reality technology (VR) has been gradually applied in the field of foreign language and interpreting teaching for creating a real, interactive and experiential language learning environment. Situated Learning Theory stresses that the fundamental mechanism for learning to take place is for individuals to participate in the real context in which knowledge is generated, and to realize the construction of knowledge through the interaction with the community of practice and the environment. Virtual reality technology can satisfy the needs of language learners for real contexts by providing learners with immersive, imaginative and interactive scenario simulations, and has a certain positive effect on alleviating learning anxiety. Therefore, relying on the virtual simulation course “United Nations Kubuqi International Desert Ecological Science and Technology Innovation International Volunteer Language Service Practical Training System”, this paper adopts a combination of quantitative and qualitative analyses to investigate the interpretation anxiety level of the interpreter trainees and the factors affecting them in the VR situation to help them discover effective responses to interpreter anxiety.