期刊文献+
共找到8,242篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanism of high-preload support based on the NPR anchor cable in layered soft rock tunnels
1
作者 SUI Qiru HE Manchao +3 位作者 SHI Mengfan TAO Zhigang ZHAO Feifei ZHANG Xiaoyu 《Journal of Mountain Science》 SCIE CSCD 2024年第4期1403-1418,共16页
The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric d... The control of large deformation problems in layered soft rock tunnels needs to solve urgently.The roof problem is particularly severe among the deformation issues in tunnels.This study first analyzes the asymmetric deformation modes in layered soft rock tunnels with large deformations.Subsequently,we construct a mechanical model under ideal conditions for controlling the roof of layered soft rock tunnels through high preload with the support of NPR anchor cables.The prominent roles of long and short NPR anchor cables in the support system are also analyzed.The results indicate the significance of high preload in controlling the roof of layered soft rock tunnels.The short NPR anchor cables effectively improve the integrity of the stratified soft rock layers,while the long NPR anchor cables effectively mobilize the self-bearing capacity of deep-stable rock layers.Finally,the high-preload support method with NPR anchor cables is validated to have a good effect on controlling large deformations in layered soft rock tunnels through field monitoring data. 展开更多
关键词 Tunnel engineering Soft rock High-preload support NPR anchor cables
下载PDF
Stability mechanism and control of the pumpable supports in longwall recovery room
2
作者 Dong Zhang Jianbiao Bai +8 位作者 Zhijun Tian Zizheng Zhang Yonghong Guo Rui Wang Ying Xu Hao Fu Shuai Yan Min Deng Shuaigang Liu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期957-974,共18页
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un... The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery. 展开更多
关键词 Pre-driven recovery room Pumpable supports Unbalanced bearing coefficient Hydraulic fracture Stability analysis Surrounding rock control
下载PDF
Study on creep deformation and energy development of underground surrounding rock under four‐dimensional support
3
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Pengfei Yan Nan Cui Ruichong Zhang 《Deep Underground Science and Engineering》 2024年第1期25-38,共14页
There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(here... There is an urgent need to develop optimal solutions for deformation control of deep high‐stress roadways,one of the critical problems in underground engineering.The previously proposed four‐dimensional support(hereinafter 4D support),as a new support technology,can set the roadway surrounding rock under three‐dimensional pressure in the new balanced structure,and prevent instability of surrounding rock in underground engineering.However,the influence of roadway depth and creep deformation on the surrounding rock supported by 4D support is still unknown.This study investigated the influence of roadway depth and creep deformation time on the instability of surrounding rock by analyzing the energy development.The elastic strain energy was analyzed using the program redeveloped in FLAC3D.The numerical simulation results indicate that the combined support mode of 4D roof supports and conventional side supports is highly applicable to the stability control of surrounding rock with a roadway depth exceeding 520 m.With the increase of roadway depth,4D support can effectively restrain the area and depth of plastic deformation in the surrounding rock.Further,4D support limits the accumulation range and rate of elastic strain energy as the creep deformation time increases.4D support can effectively reduce the plastic deformation of roadway surrounding rock and maintain the stability for a long deformation period of 6 months.As confirmed by in situ monitoring results,4D support is more effective for the long‐term stability control of surrounding rock than conventional support. 展开更多
关键词 coal mines elastic strain energy four‐dimensional support large roadway depth long‐term stability control plastic deformation surrounding rock
下载PDF
Interaction between source rock and evaporite:A case study of natural gas generation in the northern Dongying Depression 被引量:3
4
作者 JIN Qiang WANG Juan +3 位作者 SONG Guoqi WANG Li LIN Lamei BAI Shengpin 《Chinese Journal Of Geochemistry》 EI CAS 2010年第1期75-81,共7页
It is well known that oil generated from source rocks of saline-lake facies is characteristic of low Pr/Ph ratio and high contents of gammacerane.The authors found that gas generated from the same source rocks was hig... It is well known that oil generated from source rocks of saline-lake facies is characteristic of low Pr/Ph ratio and high contents of gammacerane.The authors found that gas generated from the same source rocks was high in benzene and cyclohexane contents and had light carbon isotope compositions.In this study,a series of thermal simulations of gas generations on source rock with/without evaporites(such as carbonate,gypsum,and sodium chlorite,respectively),were conducted.It was found that the gypsum played an important role on the catalyzsis of gas generation in the thermal simulations.Compositions of the gaseous hydrocarbons generated from source rocks with evaporites are very similar to those of natural gases discovered from northern Dongying Depression.Meanwhile,in the thermal simulations,it was found that the carbon isotopic compositions of gaseous hydrocarbons generated from source rocks with evaporites are lighter than those of the gases from source rocks without evaporites.Therefore,it is concluded that natural gases discovered from northern Dongying Depression are the product of interaction between source rocks and evaporites(especially gypsum) of the saline facies. 展开更多
关键词 东营凹陷北部 湖相烃源岩 天然气发电 相互作用 蒸发 碳同位素组成 气体打火机 碳氢化合物
下载PDF
Excavation compensation and bolt support for a deep mine drift
5
作者 Longji Guo Zhigang Tao +1 位作者 Manchao He Massimo Coli 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期3206-3220,共15页
To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 13... To overcome large deformation of deep phosphate rock roadways and pillar damage,a new type of constant-resistance large-deformation negative Poisson’s ratio(NPR)bolt that can withstand a high prestress of at least 130 KN was developed.In the conducted tests,the amount of deformation was 200-2000 mm,the breaking force reached 350 KN,and a high constant-resistance pre-stress was maintained during the deformation process.A stress compensation theory of phosphate rock excavation based on NPR bolts is proposed together with a balance system for bolt compensation of the time-space effect and high NPR pre-stress.Traditional split-set rock bolts are unable to maintain the stability of roadway roofs and pillars.To verify the support effect of the proposed bolt,field tests were conducted using both the proposed NPR bolts and split-set rock bolts as support systems on the same mining face.In addition,the stress compensation mechanism of roadway mining was simulated using the particle flow code in three dimensions(PFC^(3D))-fast Lagrangian analysis of continua(FLAC^(3D))particle-flow coupling numerical model.On-site monitoring and numerical simulations showed that the NPR excavation compensation support scheme effectively improves the stress state of the bolts and reduces the deformation of the surrounding rock.Compared to the original support scheme,the final deformation of the surrounding rock was reduced by approximately 70%.These results significantly contribute to domestic and foreign research on phosphate-rock NPR compensation support technology,theoretical systems,and engineering practices,and further promote technological innovation in the phosphate rock mining industry. 展开更多
关键词 Deep phosphate rock NPR bolt Split-set rock bolt PFC3D-FLAC3D Compensation support
下载PDF
A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks
6
作者 Wen-Quan Deng Tian-Bo Liang +3 位作者 Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1099-1112,共14页
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi... Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores. 展开更多
关键词 Imbibition Multiphase flow Tight rock Interacting capillary bundle model Wettability
下载PDF
Strength weakening and its micromechanism in water–rock interaction,a short review in laboratory tests 被引量:5
7
作者 Cun Zhang Qingsheng Bai +3 位作者 Penghua Han Lei Wang Xiaojie Wang Fangtian Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第1期18-32,共15页
Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of ... Water–rock interaction(WRI)is a topic of interest in geology and geotechnical engineering.Many geological hazards and engineering safety problems are severe under the WRI.This study focuses on the water weakening of rock strength and its infuencing factors(water content,immersion time,and wetting–drying cycles).The strength of the rock mass decreases to varying degrees with water content,immersion time,and wetting–drying cycles depending on the rock mass type and mineral composition.The corresponding acoustic emission count and intensity and infrared radiation intensity also weaken accordingly.WRI enhances the plasticity of rock mass and reduces its brittleness.Various microscopic methods for studying the pore characterization and weakening mechanism of the WRI were compared and analyzed.Various methods should be adopted to study the pore evolution of WRI comprehensively.Microscopic methods are used to study the weakening mechanism of WRI.In future work,the mechanical parameters of rocks weakened under long-term water immersion(over years)should be considered,and more attention should be paid to how the laboratory scale is applied to the engineering scale. 展开更多
关键词 Water–rock interaction Weakening mechanism Water content Immersion time Wetting–drying cycles Microscopic methods
下载PDF
Failure behavior and strength model of blocky rock mass with and without rockbolts
8
作者 Chun Zhu Xiansen Xing +4 位作者 Manchao He Zhicheng Tang Feng Xiong Zuyang Ye Chaoshui Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期747-762,共16页
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme... To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks. 展开更多
关键词 Blocky rock mass rockbolt ground support Uniaxial compression test Failure mechanism Uniaxial compressive strength model
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
9
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 Damage constitutive model Parameter calibration rock modeling SandSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
Failure mechanism and control countermeasures of surrounding rock at deep large section chamber intersection in the Wanfu Coal Mine 被引量:1
10
作者 SUN Xiao-ming QI Zhen-min +3 位作者 ZHANG Yong MIAO Cheng-yu ZHAO Cheng-wei HE Man-chao 《Journal of Mountain Science》 SCIE CSCD 2023年第7期2058-2075,共18页
In order to solve the problem of large deformation at the intersection of deep large section soft rock roadway,this paper takes the intersection of kilometer-deep roadway in the Wanfu Coal Mine as an engineering examp... In order to solve the problem of large deformation at the intersection of deep large section soft rock roadway,this paper takes the intersection of kilometer-deep roadway in the Wanfu Coal Mine as an engineering example and applies Negative Poisson’s Ratio(NPR)steel anchor cable in roadway support for the first time.By combining numerical simulation indoor test,theoretical analysis and field test,the deformation mechanism of surrounding rock at the intersection of deep-buried roadway was analyzed,and the control strategy with micro NPR steel anchor cable as the core was put forward.Through numerical simulation,the numerical analysis model of roadway intersection with different intersection angles and excavation sequence was constructed,and the impact of two key variables of rake angle and excavation sequence on the stability of surrounding rock at roadway intersection was studied.The optimal dip angle is 90°and the optimal excavation sequence was determined as pump house-pump house passage-substation.The mechanical properties of the micro-NPR steel anchor cable were studied through the static tensile test in the laboratory.The results showed that the micro-NPR steel anchor cable showed high constant resistance,uniform tensile,no yield platform,and no obvious necking phenomenon during breaking.Through theoretical derivation,it was calculated that the vertical stress of roadway intersection is 45 MPa,and the bearing capacity of superposed arch composed of micro NPR steel anchor cable is 1257 kN,which is enough to guarantee the overall stability of intersection.Support application test and monitoring were carried out on site,and it was verified that the combined support strategy of short and long micro NPR steel anchor cable has a good control effect on large deformation of surrounding rock at intersection,which provides a new support material and support means for the safety and stabilization control of surrounding rock at intersection. 展开更多
关键词 Mountain tunnel Composite lining Surrounding rock grade Force variation Primary support Secondary lining
下载PDF
Energy absorption characteristics of novel high-strength and hightoughness steels used for rock support 被引量:1
11
作者 Ding Wang Manchao He +3 位作者 Liangjiu Jia Xiaoming Sun Min Xia Xuchun Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1441-1456,共16页
Nowadays,the development of novel metallic materials for rock support have attracted research interests since they can significantly improve the deformation and energy absorption capacities of rock bolts.Although prev... Nowadays,the development of novel metallic materials for rock support have attracted research interests since they can significantly improve the deformation and energy absorption capacities of rock bolts.Although previous studies proved the importance and mechanical advantages of utilizing high-strength and high-toughness(HSHT)steels in rock support,there is no systematic analysis to reveal the essential energy absorption parameter and the guidelines for further development of metallic rock support materials.This paper analyzes the energy absorption characteristics of novel HSHT steels(negative Poisson’s ratio(NPR)and twinning-induced plasticity(TWIP)steels)in comparison with conventional rock support materials.A physically based crystal plasticity(CP)model was set up and calibrated to study the effect of strain hardening rate(SHR).Meanwhile,the roles of underlying physical mechanisms,i.e.the dislocation density and twin volume fraction,were studied.The results show that the improvement of energy absorption density(EAD)is essential for further development of rock support materials,besides the increase of energy absorption rate(EAR)for previous development of conventional rock support materials.The increase of EAD requires increases of both strength and deformation capacity of materials.For HSHT steels,the decrease of SHR has a positive effect on the improvement of EAD.In addition,the increase of EAD is followed by the increase of twin volume fraction and the decrease of plastic Poisson’s ratio which can promote deformation plasticity of materials.Meanwhile,the increase of EAR is correlated with the accumulation of dislocation density,which can increase the strength of materials.This paper provides the theoretical basis and guidelines for developing rock support materials in deep underground engineering and other related fields. 展开更多
关键词 rock support Steel Energy absorption Strain hardening rate(SHR) Crystal plasticity(CP)
下载PDF
Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_(2)-Water-Rock Interaction
12
作者 CHEN Bowen LI Qi +1 位作者 TAN Yongsheng Ishrat Hameed ALVI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期956-971,共16页
To investigate the impacts of mineral composition on physical and mechanical properties of carbonate rocks,limestone specimens containing different contents in calcite and dolomite are selected to perform CO_(2)-water... To investigate the impacts of mineral composition on physical and mechanical properties of carbonate rocks,limestone specimens containing different contents in calcite and dolomite are selected to perform CO_(2)-water-rock reaction experiments.The X-ray Diffraction(XRD) and Nuclear Magnetic Resonance(NMR) are carried out to examine the change characteristics of mineral dissolution and pore structure after reaction.The core flooding experiments with Fiber Bragg gratings are implemented to examine the stress sensitivity of carbonate rocks.The results show that the limestones containing pure calcite are more susceptible to acid dissolution compared to limestone containing impure dolomite.The calcite content in pure limestone decreases as the reaction undergoes.The dissolution of dolomite leads to the formation of calcite in impure limestone.Calcite dissolution leads to the formation of macropore and flow channels in pure limestone,while the effects of impure dolomite in impure limestone results in mesopore formation.When confining pressure is lower than 12 MPa,pure limestones demonstrate higher strain sensitivity coefficients compared to impure limestone containing dolomite after reaction.When confining pressure exceeds 12 MPa,the strain sensitivity coefficients of both pure and impure limestones become almost equal. 展开更多
关键词 CO_(2) geological storage carbonate rocks CO_(2)-water-rock interaction deformation response Fiber Bragg gratings sensors
下载PDF
Groundwater monitoring of an open-pit limestone quarry:Water-rock interaction and mixing estimation within the rock layers by geochemical and statistical analyses 被引量:9
13
作者 Khy Eam Eang Toshifumi Igarashi +3 位作者 Megumi Kondo Tsurugi Nakatani Carlito Baltazar Tabelin Ryota Fujinaga 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第6期849-857,共9页
Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals l... Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes. 展开更多
关键词 Water-rock interaction GROUNDWATER MIXING Interbedded layer Geochemist’s WORKBENCH rock SLOPE stability
下载PDF
Estimating the properties of weathered bedrock and pile-rock interaction from the geological strength index 被引量:1
14
作者 ZHOU Chun-mei SHAO Wei +1 位作者 YIN Kun-long YANG Zong-ji 《Journal of Mountain Science》 SCIE CSCD 2018年第8期1757-1776,共20页
The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to est... The effect of variable rock mass properties on pile-rock interaction poses a great challenge to the design of stabilizing piles and numerical analysis of pile-rock interaction. The paper presents a novel method to estimate the properties of weathered bedrock, which can be applied to routine design of landslide-stabilizing piles for collivial landslides. The Ercengyan landslide located in the Three Gorges Reservoir, China, is the area of interest for this study. A geological investigation and triaxial tests were conducted to estimate the basic parameters, including Geological Strength Index(GSI), uniaxial compressive strength σ_(ci) and Hoek-Brown constant m_i of intact bedrock in the study area. Hoek-Brown criterion was used to estimate mechanical properties of the weathered rock, including elastic modulus E_m, cohesion c, friction angle Φ, and normal ultimate lateral resistance p_(max). A parametric study was performed to evaluate the effect of parameterizations of GSI, σ_(ci) and m_i on the bedrock properties and p-y curves. The estimated rock mass properties were used with PLAXIS 2D software to simulate pile-rock interaction. Effect of GSI on stress at the pile-rock interface and in the rock, pile bending moment, pile shear force, and p-y curve were analysed. 展开更多
关键词 LandSLIDE Stabilizing pile Weathered rock Pile-rock interaction Geological strength index
下载PDF
Tunnel behaviour and support associated with the weak rock masses of flysch 被引量:2
15
作者 V.Marinos 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第3期227-239,共13页
Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geo... Flysch formations are generally characterised by evident heterogeneity in the presence of low strength and tectonically disturbed structures. The complexity of these geological materials demands a more specialized geoengineering characterisation. In this regard, the paper tries to discuss the standardization of the engineering geological characteristics, the assessment of the behaviour in underground excava- tions, and the instructions-guidelines for the primary support measures for flysch layer qualitatively. In order to investigate the properties of flysch rock mass, 12 tunnels of Egnatia Highway, constructed in Northern Greece, were examined considering the data obtained from the design and construction records. Flysch formations are classified thereafter in 11 rock mass types (I-XI), according to the siltstone -sandstone proportion and their tectonic disturbance. A special geological strength index (GSI) chart for heterogeneous rock masses is used and a range of geotechnical parameters for every flysch type is presented. Standardization tunnel behaviour for every rock mass type of flysch is also presented, based on its site-specific geotechnical characteristics such as structure, intact rock strength, persistence and complexity of discontinuities. Flysch, depending on its types, can be stable even under noticeable overburden depth, and exhibit wedge sliding and wider chimney type failures or cause serious deformation even under thin cover. Squeezing can be observed under high overburden depth. The magnitude of squeezing and tunnel support requirements are also discussed for various flysch rock mass types under different overburdens. Detailed principles and guidelines for selecting immediate support mea- sures are proposed based on the principal tunnel behaviour mode and the experiences obtained from these 12 tunnels. Finally, the cost for tunnel support from these experiences is also presented. 展开更多
关键词 Flysch Geological strength index(GSI) Weak rock Tunnel behaviour Temporary support
下载PDF
Research progress and prospect of interaction between rock engineering and geo-environments 被引量:1
16
作者 Yujing Jiang Xuezhen Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第6期722-723,共2页
In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Proj... In recent years, a large number of geotechnical engineering projectshave been completed or under construction in China, such asthe Three Gorges Dam Project, Expressway Network Plan, South-to-North Water Diversion Project, West-to-East Gas Pipeline Project,etc. (Wang, 2003; Li, 2010; Huang, 2011; She and Lin, 2014). Theconstruction of large-scale geotechnical engineering not onlybrings huge economic benefits, but also causes large interferenceto the lithosphere and hydrosphere that we rely on for survival(Wang et al., 2005). This paper focuses on the interaction mechanismof rock engineering and geo-environments in the fields of urbanunderground space utilization, natural gas hydrate exploitationand high-level radioactive waste disposal. 展开更多
关键词 Research progress and prospect of interaction between rock engineering and geo-environments rock
下载PDF
Numerical Analysis of Interaction Between Pile-Supported Pier and Bank Slope 被引量:5
17
作者 WANG Nianxiang(王年香) 《China Ocean Engineering》 SCIE EI 2001年第1期117-128,共12页
Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is... Two and three-dimensional finite element analysis programs for pile-soil interaction are compiled. Duncan-Chang's Model is used. The construction sequence of the pier is modeled. The pile-soil interface element is used. The influence of the combination type of piles on the deformation of bank slope and pile behaviour is analyzed. Different designs of a pile-supported pier are compared thoroughly. Calculation results show that the stresses and displacements of the pile are directly related to the distance from the bank slope and the direction of inclination. An inclined prop pile set in the rear platform would remarkably reduce the stresses of piles and the displacement of the pier. 展开更多
关键词 interaction pile-supported pier bank slope numerical analysis
下载PDF
Interactions between basalts and oil source rocks in rift basins:CO_2 generation 被引量:2
18
作者 金强 许丽 +1 位作者 万从礼 曾怡 《Chinese Journal Of Geochemistry》 EI CAS 2007年第1期58-65,共8页
Basalts interbedded with oil source rocks are discovered frequently in rift basins of eastern China, where CO2 is found in reservoirs around or within basalts, for example in the Binnan reservoir of the Dongying Depre... Basalts interbedded with oil source rocks are discovered frequently in rift basins of eastern China, where CO2 is found in reservoirs around or within basalts, for example in the Binnan reservoir of the Dongying Depression. In the reservoirs, CO2 with heavy carbon isotopic composition (δ13C>-10‰ PDB) is in most cases accounts for 40% of the total gas reserve, and is believed to have resulted from degassing of basaltic magma from the mantle. In their investigations of the Binnan reservoir, the authors suggested that the CO2 would result from interactions between the source rocks and basalts. As the source rocks around basalts are rich in carbonate minerals, volcanic minerals, transition metals and organic matter, during their burial history some of the transition metals were catalyzed on the thermal degradation of organic matter into hydrocarbons and on the decomposition of carbonate minerals into CO2, which was reproduced in thermal simulations of the source rocks with the transition metals (Ni and Co). This kind of CO2 accounts for 55%-85% of the total gas reserve generated in the process of thermal simulation, and its δ13C values range from -11‰- -7.2‰ PDB, which are very similar to those of CO2 found in the Binnan reservoir. The co-generation of CO2 and hydrocarbon gases makes it possible their accumulation together in one trap. In other words, if the CO2 resulted directly from degassing of basaltic magma or was derived from the mantle, it could not be accumulated with hydrocarbon gases because it came into the basin much earlier than hydrocarbon generation and much earlier than trap formation. Therefore, the source rocks around basalts generated hydrocarbons and CO2 simultaneously through catalysis of Co and Ni transition metals, which is useful for the explanation of co-accumulation of hydrocarbon gases and CO2 in rift basins in eastern China. 展开更多
关键词 裂谷盆地 玄武岩 富油源岩 相互作用 二氧化碳形成
下载PDF
System dynamics model of the support-surrounding rock system in fully mechanized mining with large mining height face and its application 被引量:7
19
作者 Yuan Yong Tu Shihao +1 位作者 Zhang Xiaogang Li Bo 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期879-884,共6页
Fully mechanized mining with large mining height(FMMLMH)is widely used in thick coal seam mining face for its higher recovery ratio,especially where the thickness is less than 7.0 m.However,because of the great mining... Fully mechanized mining with large mining height(FMMLMH)is widely used in thick coal seam mining face for its higher recovery ratio,especially where the thickness is less than 7.0 m.However,because of the great mining height and intense rock pressure,the coal wall rib spalling,roof falling and the instability of support occur more likely in FMMLMH working face,and the above three types of disasters interact with each other with complicated relationships.In order to get the relationship between each two of coal wall,roof,floor and support,and reduce the occurrence probability of the three types of disasters,we established the system dynamics(SD)model of the support-surrounding rock system which is composed of"coal wall-roof-floor-support"(CW-R-F-S)in a FMMLMH working face based on the condition of No.15104 working face in Sijiazhuang coal mine.With the software of Vensim,we also simulated the interaction process between each two factors of roof,floor,coal wall and the support.The results show that the SD model of"CW-R-F-S"system can reveal the complicated and interactive relationship clearly between the support and surrounding rock in the FMMLMH working face.By increasing the advancing speed of working face,the support resistance or the length of support guard,or by decreasing the tipto-face distance,the stability of"CW-R-F-S"system will be higher and the happening probability of the disasters such as coal wall rib spalling,roof falling or the instability of support will be lower.These research findings have been testified in field application in No.15104 working face,which can provide a new approach for researching the interaction relationship of support and surrounding rock. 展开更多
关键词 FMMLMH support-surrounding rock system SD model Disaster control Simulation analysis
下载PDF
Principle of Interaction between Plastic Volumetric and Shear Strains and the Constitutive Model for Geotechnical Materials 被引量:2
20
作者 Wang Jingtao(1.Department of Architectural Engineering, Xinyang Normal University, Xinyang 464000, Henan, China 2.School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China) 《工程科学(英文版)》 2007年第2期129-138,共10页
Here is proposed the principle of interaction between plastic volumetric and shear strains, revealing the main origin of generating the complexity and variety of deformations for geotechnical materials. Here are also ... Here is proposed the principle of interaction between plastic volumetric and shear strains, revealing the main origin of generating the complexity and variety of deformations for geotechnical materials. Here are also explained the manners of the interaction between plastic volumetric and shear strains and the conditions of generating shear dilatancy. It is demonstrated that dependency of the stress path exists and is a combination of effects of this interaction. According to this principle, it is theoretically proved that the space critical state line exists, and is unique and independent of the stress history. Based on this principle, the constitutive models that are able completely and accurately to characterize the basic behavior features for geotechnical materials have been constructed within the framework of thermodynamics. What is determined is a general expression of the constitutive relation as well as the inequality of the dissipative potential increment for obeying the second law of thermodynamics. 展开更多
关键词 interaction between VOLUMETRIC and SHEAR strains constitutive model for rock and soil dependency of stress path pressure-sensitivity SHEAR DILATANCY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部