The new gravity field models of gravity field and steady-state ocean circulation explorer(GOCE),TIM_R6 and DIR_R6,were released by the European Space Agency(ESA)in June 2019.The sixth generation of gravity models have...The new gravity field models of gravity field and steady-state ocean circulation explorer(GOCE),TIM_R6 and DIR_R6,were released by the European Space Agency(ESA)in June 2019.The sixth generation of gravity models have the highest possible signal and lowest error levels compared with other GOCE-only gravity models,and the accuracy is significantly improved.This is an opportunity to build high precision geostrophic currents.The mean dynamic topography and geostrophic currents have been calculated by the 5th(TIM_R5 and DIR_R5),6th(TIM_R6 and DIR_R6)release of GOCE gravity field models and ITSG-Grace2018 of GRACE gravity field model in this study.By comparison with the drifter results,the optimal filtering lengths of them have been obtained(for DIR_R5,DIR_R6,TIM_R5 and TIM_R6 models are 1°and for ITSG-Grace2018 model is 1.1°).The filtered results show that the geostrophic currents obtained by the GOCE gravity field models can better reflect detailed characteristics of ocean currents.The total geostrophic speed based on the TIM_R6 model is similar to the result of the DIR_R6 model with standard deviation(STD)of 0.320 m/s and 0.321 m/s,respectively.The STD of the total velocities are 0.333 m/s and 0.325 m/s for DIR_R5 and TIM_R5.When compared with ITSG-Grace2018 results,the STD(0.344 m/s)of total geostrophic speeds is larger than GOCE results,and the accuracy of geostrophic currents obtained by ITSG-Grace2018 is lower.And the absolute errors are mainly distributed in the areas with faster speeds,such as the Antarctic circumpolar circulation,equatorial region,Kuroshio and Gulf Stream areas.After the remove-restore technique was applied to TIM_R6 MDT,the STD of total geostrophic speeds dropped to 0.162 m/s.展开更多
Velocity oscillations at the head of the gravity current were investigated in experiments and numerical simulations of a locked-exchange flow.A comparison of the experimental and numerical simulations showed that the ...Velocity oscillations at the head of the gravity current were investigated in experiments and numerical simulations of a locked-exchange flow.A comparison of the experimental and numerical simulations showed that the depth and volume of the released fluid affected the oscillations in the velocity of the gravity current.At the initial stage,the head moved forward at a constant velocity,and velocity oscillations occurred.The head maximum thickness increased at the same time as the head,which did not have a round,and accumulated buoyant fluid due to the buoyancy effect intrusion force.The period of accumulation and release of the buoyant fluid was almost the same as that observed for the head movement velocity;the head movement velocity was faster when the buoyant fluid accumulated and slower when it was released.At the viscous stage,the forward velocity decreased proportionally to the power of 1/2 of time,since the head was not disturbed from behind.As the mass concentration at the head decreased,the gravity current was slowed by the viscous stage in its effect.At the viscous stage,the mass concentration at the head was no longer present,and the velocity oscillations also decreased.展开更多
Turbulence modeling by use of the renormalization group (RNG) κ-ε model for Reynolds-stress closure is carried out to reveal the evolution dynamics for lock release gravity currents with the so-called slumping, in...Turbulence modeling by use of the renormalization group (RNG) κ-ε model for Reynolds-stress closure is carried out to reveal the evolution dynamics for lock release gravity currents with the so-called slumping, inviscid and viscous phases. Field evolution of the turbulent current is investigated, and time transition of global energy balance is presented between the terms of potential energy, averaged kinetic energy, turbulent kinetic energy, turbulent dissipation and viscous dissipation. It is well illustrated that turbulent dissipation and viscous force are respectively dominant in the inviscid and viscous phases, while inertia effect accounts for the slumping.展开更多
This study includes a series of laboratory experiments for investigated the gravity current of fresh water with density ρ-?ρ, and initial speed u0 upon the free surface of an ambient liquid (salty water) with densi...This study includes a series of laboratory experiments for investigated the gravity current of fresh water with density ρ-?ρ, and initial speed u0 upon the free surface of an ambient liquid (salty water) with density ρ at rest in a basin. It’s have been presented to illuminate the dominant flow and transport phenomena in the presence of river, stream and wetland ecology, stream corridor restoration, in the case of accidental pollution spills. The characterized of the local kinematic field, i.e. the local velocity and vorticity fields, the measurement methods include particle image velocimetry (PIV) at the water surface using a technique similar to large scale of particle image velocimetry (LSPIV).展开更多
Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ra...Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ray diffractometry and laser particle analysis.The results indicated that current efficiencies of electrolytic copper powders under super gravity field increased by more than 20% compared with that under normal gravity condition.Cell voltage under super gravity field was also much lower.The size of copper powders decreased with the increase of gravity coefficient(G).The increase of current efficiency can be contributed to the disturbance of electrode/electrolyte interface and enhanced mass transfer of Cu2+ in super gravity field.Meanwhile,the huge gravity acceleration would promote the detachment of copper powders from electrode surface during electrolytic process,which can prevent the growth of copper powders.展开更多
Direct numerical simulations of two-dimensional gravity currents with small and medium density variations are performed using different non-Boussinesq buoyancy approximations. Taking the full low-Machnumber approximat...Direct numerical simulations of two-dimensional gravity currents with small and medium density variations are performed using different non-Boussinesq buoyancy approximations. Taking the full low-Machnumber approximation as the reference, the accuracy of several buoyancy terms are examined. It is found that all considered buoyancy terms performed well in the cases with small density variation. In the cases with medium density variation, the classical gravitational Boussinesq’s buoyancy term showed the lack of accuracy, and a simple correction did not make any improvement. In contrast, the recently introduced second-order buoyancy term showed a significantly higher accuracy. The present results and our previous derivations indicate that simple algebraic buoyancy approximations extended from the Boussinesq’s gravitational buoyancy are unlikely to achieve an accuracy beyond first order. Instead, it seems necessary to solve at least one extra Poisson equation for buoyancy terms to capture the higher-order baroclinic effect. An approximate analysis is also provided to show the leading term of the non-Boussinesq effect corresponding to gravity.展开更多
A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in...A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.展开更多
In the context of the covariant teleparallel framework, we use the 2-form translational momentum to compute the total energy of two general spherically symmetric frames. The first one is characterized by an arbitrary ...In the context of the covariant teleparallel framework, we use the 2-form translational momentum to compute the total energy of two general spherically symmetric frames. The first one is characterized by an arbitrary function H(r), which preserves the spherical symmetry and reproduces all the previous solutions, while the other one is characterized by a parameter ξ which ensures the vanishing of the axial of trace of the torsion. We calculate the total energy by using two procedures, i.e., when the WeitzenbSck connection Гα^β is trivial, and show how H(r) and ξ play the role of an inertia that leads the total energy to be unphysical. Therefore, we take into account Гα^β and show that although the spacetimes we use contain an arbitrary function and one parameter, they have no effect on the form of the total energy and momentum as it should be.展开更多
By the Volume of Fluid (VOF) multiphase flow model two-dimensional gravity currents with three phases including air are numerically simulated in this article. The necessity of consideration of turbulence effect for hi...By the Volume of Fluid (VOF) multiphase flow model two-dimensional gravity currents with three phases including air are numerically simulated in this article. The necessity of consideration of turbulence effect for high Reynolds numbers is demonstrated quantitatively by LES (the Large Eddy Simulation) turbulence model. The gravity currents are simulated for h not equal H as well as h = H, where h is the depth of the gravity current before the release and H is the depth of the intruded fluid. Uprising of swell occurs when a current flows horizontally into another lighter one for h not equal H. The problems under what condition the uprising of swell occurs and how long it takes are considered in this article. All the simulated results are in reasonable agreement with the experimental results available.展开更多
An inverted one-and-a-half layer reduced-gravity linear shallow-waer model with lin-early varied topography is formulated, in which a uniform mid-depth upweling is prescribed The analyti-cal particular solution of ord...An inverted one-and-a-half layer reduced-gravity linear shallow-waer model with lin-early varied topography is formulated, in which a uniform mid-depth upweling is prescribed The analyti-cal particular solution of order single equation in u1 showed that the linear topography inclinationforces the water column to move pole-ward with increased planetary vorticity or to produce relative vortici-ty, and hence to depress the cross-equatorial transport of deep western boundary current. It is notewnrthythat the topography Plays the same role as Newtonian Cooling in forcing on the absolute voricity.展开更多
Combining sea level anomalies with the mean dynamic topography derived from the geoid of the EGM08 global gravity field model and the CLS01 mean sea surface height, this study examined the characteristics of global ge...Combining sea level anomalies with the mean dynamic topography derived from the geoid of the EGM08 global gravity field model and the CLS01 mean sea surface height, this study examined the characteristics of global geostrophic surface currents and the seasonal and interannual variabilities of the mean velocity of the Kuroshio (the Kuroshio source and Kuroshio extension). The patterns of global geostrophic surface currents we derived and the actual ocean circulation are basically the same. The mean velocity of the Kuroshio source is high in winter and low in fall, and its seasonal variability accounts for 18% of its total change. The mean velocity of the Kuroshio extension is high in summer and low in winter, and its seasonal variability accounts for 25% of its total change. The interannual variabilities of the mean velocity of the Kuroshio source and Kuroshio extension are significant. The mean velocity of the Kuroshio source and ENSO index are inversely correlated. However, the relationship between the mean velocity of the Kuroshio extension and the ENSO index is not clear. Overall, the velocity of the Kuroshio increases when La Nina occurs and decreases when E1 Nino occurs.展开更多
In this paper, the characteristics of density current under the action of waves are described with the help of flume experiment and theoretical analysis. The study shows that turbid water under the action of the waves...In this paper, the characteristics of density current under the action of waves are described with the help of flume experiment and theoretical analysis. The study shows that turbid water under the action of the waves can present three types of motion, i. e. significant stratification, fragile stratification and strong mixing. The motion gf turbid;,ater presents significant stratification when (H/D)/root Delta rho/rho less than or equal to 4.5, generally this state is known as density current. The formulas of motion velocity, thickness, and discharge of density current moving on horizontal bottom are derived by use of basic equations such as momemtum equation, equation of energy conservation and continuity equation of fluid. The time-average velocity and the thickness of density current under the action of waves have a relationship with such parameters as relative density (Delta rho/rho), wave height (H), and water depth (D). When these parameters are determined, the time-average thickness and motion velocity of density current are also determined. The relative thickness of density current (D-t/D) decreases with the increase of Delta rho/rho and increases with the increase of H/D. On the other hand, the motion velocity of density current increases with the increase of Delta rho/rho and decreases with the increase of the relative thickness (D-t/D) of density current. It is shown that the calculated results are in agreement with those of the flume experiment.展开更多
Lock-release gravity currents with a viscous self-similar regime are simulated by use of the renormalization group (RNG) k-ε model for Reynolds-stress closure. Besides the turbulent regime with initially a slumping p...Lock-release gravity currents with a viscous self-similar regime are simulated by use of the renormalization group (RNG) k-ε model for Reynolds-stress closure. Besides the turbulent regime with initially a slumping phase of a constant current front speed and later an inviscid self-similar phase of front speed decreasing as t -1/3 (where t is the time measured from release), the viscous self-similar regime is satisfactorily reproduced with front speed decreasing as t -4/5, consistent with well known experimental observations.展开更多
Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the low...Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the lower and middle Yangtze area in the Early Triassic and in the Yunnan-Guizhou-Guangxi area in the Early and Middle Triassic. Five fundamental types of gravity-flow limestones are recognized: slide limestone, debris-flow limestone, grain-flow limestone, turbidite limestone and rockfall limestone. They form six types of assemblage beds: slide-debris-flow limestones, slide-debris-flow-turbidite limestone, slide-debris-flow-grain-flow-turbidite limestone, rockfall-debris-flow limestone, debris-flow-turbidite limestone, and debris-flow-grain-flow-turbidite limestone. The first two were formed mainly in the Early Triassic slopes. The Middle Triassic slopes were characterized by widespread rockfall limestone. Growth faults, storms, earthquakes and oversteepened slopes are considered to be the probable triggers of the gravity flows.展开更多
In this paper, we analyze the bifurcation and the confluence of the Pacific western boundary currents by an analytical approach. Applying the conservation law, the geostrophic balance relation and the Bernoulli integr...In this paper, we analyze the bifurcation and the confluence of the Pacific western boundary currents by an analytical approach. Applying the conservation law, the geostrophic balance relation and the Bernoulli integral to a reduced gravity model, we get a quantitative relation for the outflow and the inflow, and establish the related formulae for the width and the veering angle of offshore currents under the inflow condition. Furthermore, a comparison between the volume transport based on the observation data and the analytical value for the Pacific western boundary currents is presented, which validates the theoretical analysis.展开更多
基金The Open Fund of Key Laboratory of Marine Environmental Information Technologythe Open Foundation of Technology Innovation Center for Marine Information,Ministry of Natural Resources+7 种基金the Liao Ning Revitalization Talents Program under contract No.XLYC1807161the Dalian High-level Talents Innovation Support Plan under contract No.2017RQ063the National Natural Science Foundation of China under contract Nos 41206013 and 41430963the Scientific Research Project of Liaoning Province Department of Education under contract No.QL201905the Projects of Institute of Marine Industry Technology of Liaoning Universitiesthe grant from Key R&D Program of Liaoning Province under contract No.2019JH2/10200015the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0402the Shandong Provincial Key Research and Development Program(SPKR&DP)under contract No.2019JZZY020713.
文摘The new gravity field models of gravity field and steady-state ocean circulation explorer(GOCE),TIM_R6 and DIR_R6,were released by the European Space Agency(ESA)in June 2019.The sixth generation of gravity models have the highest possible signal and lowest error levels compared with other GOCE-only gravity models,and the accuracy is significantly improved.This is an opportunity to build high precision geostrophic currents.The mean dynamic topography and geostrophic currents have been calculated by the 5th(TIM_R5 and DIR_R5),6th(TIM_R6 and DIR_R6)release of GOCE gravity field models and ITSG-Grace2018 of GRACE gravity field model in this study.By comparison with the drifter results,the optimal filtering lengths of them have been obtained(for DIR_R5,DIR_R6,TIM_R5 and TIM_R6 models are 1°and for ITSG-Grace2018 model is 1.1°).The filtered results show that the geostrophic currents obtained by the GOCE gravity field models can better reflect detailed characteristics of ocean currents.The total geostrophic speed based on the TIM_R6 model is similar to the result of the DIR_R6 model with standard deviation(STD)of 0.320 m/s and 0.321 m/s,respectively.The STD of the total velocities are 0.333 m/s and 0.325 m/s for DIR_R5 and TIM_R5.When compared with ITSG-Grace2018 results,the STD(0.344 m/s)of total geostrophic speeds is larger than GOCE results,and the accuracy of geostrophic currents obtained by ITSG-Grace2018 is lower.And the absolute errors are mainly distributed in the areas with faster speeds,such as the Antarctic circumpolar circulation,equatorial region,Kuroshio and Gulf Stream areas.After the remove-restore technique was applied to TIM_R6 MDT,the STD of total geostrophic speeds dropped to 0.162 m/s.
文摘Velocity oscillations at the head of the gravity current were investigated in experiments and numerical simulations of a locked-exchange flow.A comparison of the experimental and numerical simulations showed that the depth and volume of the released fluid affected the oscillations in the velocity of the gravity current.At the initial stage,the head moved forward at a constant velocity,and velocity oscillations occurred.The head maximum thickness increased at the same time as the head,which did not have a round,and accumulated buoyant fluid due to the buoyancy effect intrusion force.The period of accumulation and release of the buoyant fluid was almost the same as that observed for the head movement velocity;the head movement velocity was faster when the buoyant fluid accumulated and slower when it was released.At the viscous stage,the forward velocity decreased proportionally to the power of 1/2 of time,since the head was not disturbed from behind.As the mass concentration at the head decreased,the gravity current was slowed by the viscous stage in its effect.At the viscous stage,the mass concentration at the head was no longer present,and the velocity oscillations also decreased.
基金The paper was financially supported by the National Natural Science Foundation of China (Grant No.10372006)
文摘Turbulence modeling by use of the renormalization group (RNG) κ-ε model for Reynolds-stress closure is carried out to reveal the evolution dynamics for lock release gravity currents with the so-called slumping, inviscid and viscous phases. Field evolution of the turbulent current is investigated, and time transition of global energy balance is presented between the terms of potential energy, averaged kinetic energy, turbulent kinetic energy, turbulent dissipation and viscous dissipation. It is well illustrated that turbulent dissipation and viscous force are respectively dominant in the inviscid and viscous phases, while inertia effect accounts for the slumping.
文摘This study includes a series of laboratory experiments for investigated the gravity current of fresh water with density ρ-?ρ, and initial speed u0 upon the free surface of an ambient liquid (salty water) with density ρ at rest in a basin. It’s have been presented to illuminate the dominant flow and transport phenomena in the presence of river, stream and wetland ecology, stream corridor restoration, in the case of accidental pollution spills. The characterized of the local kinematic field, i.e. the local velocity and vorticity fields, the measurement methods include particle image velocimetry (PIV) at the water surface using a technique similar to large scale of particle image velocimetry (LSPIV).
基金Projects(50804043, 50674011) supported by the National Natural Science Foundation of ChinaProject(KZCX2-YW-412-2) supported the Knowledge Innovation Program of Chinese Academy of Sciences
文摘Super gravity field was employed to enhance electrolytic reaction for the preparation of copper powders.The morphology, microstructure and size of copper powders were characterized by scanning electron microscopy,X-ray diffractometry and laser particle analysis.The results indicated that current efficiencies of electrolytic copper powders under super gravity field increased by more than 20% compared with that under normal gravity condition.Cell voltage under super gravity field was also much lower.The size of copper powders decreased with the increase of gravity coefficient(G).The increase of current efficiency can be contributed to the disturbance of electrode/electrolyte interface and enhanced mass transfer of Cu2+ in super gravity field.Meanwhile,the huge gravity acceleration would promote the detachment of copper powders from electrode surface during electrolytic process,which can prevent the growth of copper powders.
基金supported by the National Natural Science Foundation of China(Grants 11822208,92152101,11772297,and 91852205)。
文摘Direct numerical simulations of two-dimensional gravity currents with small and medium density variations are performed using different non-Boussinesq buoyancy approximations. Taking the full low-Machnumber approximation as the reference, the accuracy of several buoyancy terms are examined. It is found that all considered buoyancy terms performed well in the cases with small density variation. In the cases with medium density variation, the classical gravitational Boussinesq’s buoyancy term showed the lack of accuracy, and a simple correction did not make any improvement. In contrast, the recently introduced second-order buoyancy term showed a significantly higher accuracy. The present results and our previous derivations indicate that simple algebraic buoyancy approximations extended from the Boussinesq’s gravitational buoyancy are unlikely to achieve an accuracy beyond first order. Instead, it seems necessary to solve at least one extra Poisson equation for buoyancy terms to capture the higher-order baroclinic effect. An approximate analysis is also provided to show the leading term of the non-Boussinesq effect corresponding to gravity.
基金The project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (200428)the National Natural Science Foundation of China (10272072and 50424913)the Shanghai Natural Science Foundation(05ZR14048)
文摘A fully three-dimensional surface gravitycapillary short-crested wave system is studied as two progressive wave-trains of equal amplitude and frequency, which are collinear with uniform currents and doubly-periodic in the horizontal plane, are propagating at an angle to each other. The first- and second-order asymptotic analytical solutions of the short-crested wave system are obtained via a perturbation expansion in a small parameter associated with the wave steepness, therefore depicting a series of typical three-dimensional wave patterns involving currents, shallow and deep water, and surface capillary waves, and comparing them with each other.
文摘In the context of the covariant teleparallel framework, we use the 2-form translational momentum to compute the total energy of two general spherically symmetric frames. The first one is characterized by an arbitrary function H(r), which preserves the spherical symmetry and reproduces all the previous solutions, while the other one is characterized by a parameter ξ which ensures the vanishing of the axial of trace of the torsion. We calculate the total energy by using two procedures, i.e., when the WeitzenbSck connection Гα^β is trivial, and show how H(r) and ξ play the role of an inertia that leads the total energy to be unphysical. Therefore, we take into account Гα^β and show that although the spacetimes we use contain an arbitrary function and one parameter, they have no effect on the form of the total energy and momentum as it should be.
基金This paper was supported by the National Natural Science Foundation of China (Grant No.19972061)
文摘By the Volume of Fluid (VOF) multiphase flow model two-dimensional gravity currents with three phases including air are numerically simulated in this article. The necessity of consideration of turbulence effect for high Reynolds numbers is demonstrated quantitatively by LES (the Large Eddy Simulation) turbulence model. The gravity currents are simulated for h not equal H as well as h = H, where h is the depth of the gravity current before the release and H is the depth of the intruded fluid. Uprising of swell occurs when a current flows horizontally into another lighter one for h not equal H. The problems under what condition the uprising of swell occurs and how long it takes are considered in this article. All the simulated results are in reasonable agreement with the experimental results available.
文摘An inverted one-and-a-half layer reduced-gravity linear shallow-waer model with lin-early varied topography is formulated, in which a uniform mid-depth upweling is prescribed The analyti-cal particular solution of order single equation in u1 showed that the linear topography inclinationforces the water column to move pole-ward with increased planetary vorticity or to produce relative vortici-ty, and hence to depress the cross-equatorial transport of deep western boundary current. It is notewnrthythat the topography Plays the same role as Newtonian Cooling in forcing on the absolute voricity.
基金supported by the National Basic Research Program of China(973Program,Grant No.2007CB411807)the National Marine Public Welfare Research Project of China(Grants No.201005019,201105010-12,and201105009)the National Natural Science Foundation of China(Grants No.40976006and41276018-74)
文摘Combining sea level anomalies with the mean dynamic topography derived from the geoid of the EGM08 global gravity field model and the CLS01 mean sea surface height, this study examined the characteristics of global geostrophic surface currents and the seasonal and interannual variabilities of the mean velocity of the Kuroshio (the Kuroshio source and Kuroshio extension). The patterns of global geostrophic surface currents we derived and the actual ocean circulation are basically the same. The mean velocity of the Kuroshio source is high in winter and low in fall, and its seasonal variability accounts for 18% of its total change. The mean velocity of the Kuroshio extension is high in summer and low in winter, and its seasonal variability accounts for 25% of its total change. The interannual variabilities of the mean velocity of the Kuroshio source and Kuroshio extension are significant. The mean velocity of the Kuroshio source and ENSO index are inversely correlated. However, the relationship between the mean velocity of the Kuroshio extension and the ENSO index is not clear. Overall, the velocity of the Kuroshio increases when La Nina occurs and decreases when E1 Nino occurs.
文摘In this paper, the characteristics of density current under the action of waves are described with the help of flume experiment and theoretical analysis. The study shows that turbid water under the action of the waves can present three types of motion, i. e. significant stratification, fragile stratification and strong mixing. The motion gf turbid;,ater presents significant stratification when (H/D)/root Delta rho/rho less than or equal to 4.5, generally this state is known as density current. The formulas of motion velocity, thickness, and discharge of density current moving on horizontal bottom are derived by use of basic equations such as momemtum equation, equation of energy conservation and continuity equation of fluid. The time-average velocity and the thickness of density current under the action of waves have a relationship with such parameters as relative density (Delta rho/rho), wave height (H), and water depth (D). When these parameters are determined, the time-average thickness and motion velocity of density current are also determined. The relative thickness of density current (D-t/D) decreases with the increase of Delta rho/rho and increases with the increase of H/D. On the other hand, the motion velocity of density current increases with the increase of Delta rho/rho and decreases with the increase of the relative thickness (D-t/D) of density current. It is shown that the calculated results are in agreement with those of the flume experiment.
文摘Lock-release gravity currents with a viscous self-similar regime are simulated by use of the renormalization group (RNG) k-ε model for Reynolds-stress closure. Besides the turbulent regime with initially a slumping phase of a constant current front speed and later an inviscid self-similar phase of front speed decreasing as t -1/3 (where t is the time measured from release), the viscous self-similar regime is satisfactorily reproduced with front speed decreasing as t -4/5, consistent with well known experimental observations.
文摘Abstract Episodic carbonate deposits on the Triassic continental slope in southern China are mainly composed of gravity-flow limestones and contourite limestones. Gravity-flow limestones were well developed in the lower and middle Yangtze area in the Early Triassic and in the Yunnan-Guizhou-Guangxi area in the Early and Middle Triassic. Five fundamental types of gravity-flow limestones are recognized: slide limestone, debris-flow limestone, grain-flow limestone, turbidite limestone and rockfall limestone. They form six types of assemblage beds: slide-debris-flow limestones, slide-debris-flow-turbidite limestone, slide-debris-flow-grain-flow-turbidite limestone, rockfall-debris-flow limestone, debris-flow-turbidite limestone, and debris-flow-grain-flow-turbidite limestone. The first two were formed mainly in the Early Triassic slopes. The Middle Triassic slopes were characterized by widespread rockfall limestone. Growth faults, storms, earthquakes and oversteepened slopes are considered to be the probable triggers of the gravity flows.
基金supported by the National Natural Science Foundation of China(Grant Nos.40890154,10971016,91130020)
文摘In this paper, we analyze the bifurcation and the confluence of the Pacific western boundary currents by an analytical approach. Applying the conservation law, the geostrophic balance relation and the Bernoulli integral to a reduced gravity model, we get a quantitative relation for the outflow and the inflow, and establish the related formulae for the width and the veering angle of offshore currents under the inflow condition. Furthermore, a comparison between the volume transport based on the observation data and the analytical value for the Pacific western boundary currents is presented, which validates the theoretical analysis.