The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured l...The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.展开更多
The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling sp...The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling spacecraft and satellites with strict take-off mass regulation are presented. Mathematical formulation of the inverse problem for the HP’s thermal conductivity in one-dimensional coordinate system is accompanied by the measurement results using the monotonic heating method in a vacuum adiabatic calorimeter the HP’s surface temperatures along the longitudinal axis over the entire temperature load range, thermal resistance, and arrays of thermal power data on the evaporator Q<sub>ev</sub> and vortex flow calorimeter Q<sub>cond</sub> for the condensation surface allow us to estimate the average value of the evaporator heat capacity C<sub>ev</sub> by solving the inverse thermal conductivity problem in the HP’s evaporator region. Since at the beginning of working fluid boiling for a certain time interval, the temperature of the capillary-porous evaporator remains close to constant, and with the continuation of heating and by solving the inverse thermal conductivity problem, it becomes possible to calculate the heat capacity of the working evaporator and the evaporation specific heat of the boiling working fluid and compare it with the table values.展开更多
With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear tra...With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear transformations, matrix keratosis and other anti-deepening understanding of the basics and improve the comprehensive ability to solve problems.展开更多
基金supported by the National Natural Science Foundation of China(10862003,40564001)the Innovative Research Team Building Programs of Inner Mongolia University for Nationalities
文摘The inverse problem for harmonic waves and wave packets was studied based on a full dispersive wave equation. First, a full dispersive wave equation which describes wave propagation in nondissipative microstructured linear solids is established based on the Mindlin theory, and the dispersion characteristics are discussed. Second, based on the full dispersive wave equation, an inverse problem for determining the four unknown coefficients of wave equa- tion is posed in terms of the frequencies and corresponding wave numbers of four different harmonic waves, and the inverse problem is demonstrated with rigorous mathematical theory. Research proves that the coefficients of wave equation related to material properties can be uniquely determined in cases of normal and anomalous dispersions by measuring the frequen- cies and corresponding wave numbers of four different harmonic waves which propagate in a nondissipative microstructured linear solids.
文摘The results of studies by solving the inverse thermal conductivity problem of the heat capacity of evaporator of the short linear heat pipes (HP’s) with a Laval nozzle-liked vapour channel and intended for cooling spacecraft and satellites with strict take-off mass regulation are presented. Mathematical formulation of the inverse problem for the HP’s thermal conductivity in one-dimensional coordinate system is accompanied by the measurement results using the monotonic heating method in a vacuum adiabatic calorimeter the HP’s surface temperatures along the longitudinal axis over the entire temperature load range, thermal resistance, and arrays of thermal power data on the evaporator Q<sub>ev</sub> and vortex flow calorimeter Q<sub>cond</sub> for the condensation surface allow us to estimate the average value of the evaporator heat capacity C<sub>ev</sub> by solving the inverse thermal conductivity problem in the HP’s evaporator region. Since at the beginning of working fluid boiling for a certain time interval, the temperature of the capillary-porous evaporator remains close to constant, and with the continuation of heating and by solving the inverse thermal conductivity problem, it becomes possible to calculate the heat capacity of the working evaporator and the evaporation specific heat of the boiling working fluid and compare it with the table values.
文摘With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear transformations, matrix keratosis and other anti-deepening understanding of the basics and improve the comprehensive ability to solve problems.