Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is ...Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.展开更多
Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing exp...Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.展开更多
Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that...Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.展开更多
Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,micr...Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,microstructure,and strengthening mechanisms of these multicomponent systems are very complex and often not well understood in literature.We have calculated phase diagrams of important binary,ternary,and multicomponent RE-containing alloy systems,using CALPHAD(CALculation of PHAse Diagrams).Based on these phase diagrams,this paper offers a critical overview on phase equilibria and strengthening mechanisms in these alloy systems,including precipitation,long period stacking order(LPSO),and other intermetallic phases.This review also summarized several promising Mg-RE based cast alloys in comparison with commercial WE54 and WE43 alloys;and explored new strategies for future alloy development for high strength applications.It is pointed out that the combination of precipitation and LPSO phases can lead to superior strength and ductility in Mg-RE based cast alloys.The precipitates and LPSO phases can form a complex three-dimensional network that effectively impedes dislocation motion on the basal and non-basal planes.The LPSO phases can also prevent the coarsening of precipitates when they interact,thus providing good thermal stability at elevated temperatures.Future research is needed to determine how the combination of these two types of phases can be used in alloy design and industrial scale applications.展开更多
The relationship between the types of binary alloy phase diagramsof VIII and Ib group elements and the Men- deleev numbers wasdiscussed for the first time using the VIII and IB group elements assolvent metals (A) and ...The relationship between the types of binary alloy phase diagramsof VIII and Ib group elements and the Men- deleev numbers wasdiscussed for the first time using the VIII and IB group elements assolvent metals (A) and the other elements as solute metals (B),basesd on their alloy phase diagram types. The Mendeleev numbers ofthe solvent metals and the solute metals were expressed as M_A andM_B, respectively. A two-dimension map of M_A/M_B was drawn. It isindi- cated that there is an oblique line in the map, which dividesthe binary alloy phase diagram types of solvent metals into twosymmetry parts, the phase diagram types of the other elements withsolvent metals located at the above or down of the line respectively,while on the line, △M = 0.展开更多
everal vertical sections of the phase diagram of Cd-Sn-Zn system with a constant mole fraction X_(cd)=0.2 were determined by means of differential thermal anal- ysis(DTA)at high pres:ures 0.0,0.5,1.5,and 2. 0 GPa resp...everal vertical sections of the phase diagram of Cd-Sn-Zn system with a constant mole fraction X_(cd)=0.2 were determined by means of differential thermal anal- ysis(DTA)at high pres:ures 0.0,0.5,1.5,and 2. 0 GPa respectively. The eutectic temperature of the system increases by about 50K from atmospheric pressure to the high pressure 2.0 GPa,but the ternary eutectic composition changes slightly with the pressure chnge.展开更多
The room temperature phase diagram of Al-Zn-Cu system is the important basis for judging the phase constituents of the materials at the usage condition. New results about the room temperature phase diagram of the low ...The room temperature phase diagram of Al-Zn-Cu system is the important basis for judging the phase constituents of the materials at the usage condition. New results about the room temperature phase diagram of the low copper side in the Al-Zn-Cu systems have been shown in this study. Miscibility gap of fcc phase in the Al-Zn-Cu system has also been studied by experimental diffusion-couple method and thermodynamic calculation. Properties of this miscibility gap have been known. It is practically significant for the study on the aging behavior and for the control of the microstructure and properties of the Al alloys with Zn and Cu element.展开更多
An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was reco...An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.展开更多
The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities betwe...The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities between LaO1.5 and CeO2 at 1273 K were determined. Using the new experimental data together with literature information, a set of self-consistent thermodynamic parameters for the CeO2-LaO1.5 system were optimized. Combined with thermodynamic descriptions of Ce-O and La-O systems from literature, several property diagrams of Ce-La-O system were calculated and used to explain oxidation process of the Ce-La alloys. The fluorite phase is the unique oxidation products for most of the Ce-La alloys.展开更多
The Mg-Al-Zn-Y-Ce system is one of the key systems for designing high-strength Mg alloys. The purpose of the present article is to develop a thermodynamic database for the Mg-Al-Zn-Y-Ce multicomponent system to design...The Mg-Al-Zn-Y-Ce system is one of the key systems for designing high-strength Mg alloys. The purpose of the present article is to develop a thermodynamic database for the Mg-Al-Zn-Y-Ce multicomponent system to design Mg alloys using the calculation of phase diagrams (CALPHAD) method, where the Gibbs energies of solution phases such as liquid, fcc, bcc, and hcp phases were described by the subregular solution model, whereas those of all the compounds were described by the sublattice model. The thermodynamic parameters describing Gibbs energies of the different phases in this database were evaluated by fitting the experimental data for phase equilibria and thermodynamic properties. On the basis of this database, a lot of information concerning stable and metastable phase equilibria of isothermal and vertical sections, molar fractions of constituent phases, the liquidus projection, etc., can be predicted. This database is expected to play an important role in the design of Mg alloys.展开更多
The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium all...The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium alloys,together with their heat flow−temperature curves,phase diagrams for three vertical sections were drawn:La_(x)Fe_(82)B_(y)(x+y=18),La_(x)Fe_(70)B_(y)(x+y=30)and La_(x)Fe_(53)B_(y)(x+y=47),where x and y represent mass fraction of La and B,respectively,%.Additionally,according to the phase diagrams,the compound La2Fe14B was identified as a stable phase at high temperatures.It was found to be stable between 926.2 and 792.6℃;at low temperatures,however,it decomposed into α-La,α-Fe and LaFe_(4)B_(4),according to the reaction La_(2)Fe_(14)B→α-Fe+α-La+LaFe_(4)B_(4).展开更多
The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-r...The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃,and the three two-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2,FCC-A1(Cu-rich)+δ-Ni2Si and FCC-A1(Cu-rich)+ε-Ni3Si2,two three-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2+δ-Ni2Si and FCC-A1(Cu-rich)+δ-Ni2Si+ε-Ni3Si2. For this reason,an alloy located in the Cu-rich portion may precipitate γ-Ni5Si2,δ-Ni2Si or ε-Ni3Si2;the proportion of each phase depends on the alloy composition and aging temperature. The transmission electron microscope analysis of the Cu-3.2Ni-0.75Si alloy indicates that the precipitates are mainly δ-Ni2Si with only a few γ-Ni5Si2 phase particles,which agrees well with the thermodynamic calculations of phase equilibria.展开更多
The pseudo-equilibrium phase diagram and continuous cooling transformation diagram of an N-containing 8% Cr roller steel were investigated by using thermodynamic calculation,differential scanning calorimetry,Ⅹ-ray d...The pseudo-equilibrium phase diagram and continuous cooling transformation diagram of an N-containing 8% Cr roller steel were investigated by using thermodynamic calculation,differential scanning calorimetry,Ⅹ-ray diffraction,expansion method,and so on.Under equilibrium conditions,the main carbonitrides are MX,M7C3,and M23C6 types.The measured Ac1,Ac3,start temperature of martensitic transformation,and M7C3 transformation temperatures are 811,855,324,and 1100 ℃,respectively.Bainite appears at cooling rates ranging from 0.5 to 5 ℃/s and ferrite forms at grain boundaries at a cooling rate lower than 0.5 ℃/s.Finally,the effects of adding N and lowering the C content on workability and mechanical properties of common 8%Cr steel were discussed.展开更多
On the basis of the Ag-Pd-Gd, Ag-Ru-Gd and Pd-Ru-Gd ternary systems, the partial phase diagram of Pd-Ag-Ru-Gd(Gd<25% atom fraction) quaternary system has been studied by means of X-ray diffraction analysis, diffe...On the basis of the Ag-Pd-Gd, Ag-Ru-Gd and Pd-Ru-Gd ternary systems, the partial phase diagram of Pd-Ag-Ru-Gd(Gd<25% atom fraction) quaternary system has been studied by means of X-ray diffraction analysis, differential thermal analysis, electron probe microanalysis and optical microscopy. The 700℃ isothermal sections of the Ag-Pd-5Ru-Gd, Ag-Pd-20Ru-Gd and Ag-Pd-50Ru-Gd (Gd≤25% atom fraction) phase diagrams were determined respectively. And the 700℃ isothermal section of the Pd-Ag-Ru-Gd (Gd≤25% atom fraction) quaternary system phase diagram was finally inferred. The section consists of four single-phase regions: solid solution Pd(Ag), (Ru), Pd3Gd and Ag 51 Gd 14 ; five two-phase regions: Pd(Ag)+(Ru), Pd(Ag)+ Ag 51 Gd 14 , (Ru)+ Ag 51 Gd 14 , Pd(Ag)+ Pd3Gd and (Ru)+ Pd3Gd; three three-phase regions: Pd(Ag)+ Pd3Gd+(Ru), Pd(Ag)+ Ag 51 Gd 14 +(Ru) and (Ru)+ Ag 51 Gd 14 + Pd3Gd; one four-phase region Pd(Ag)+ (Ru)+ Ag 51 Gd 14 + Pd3Gd. No new quaternary intermetallic phase is found.展开更多
Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu allo...Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.展开更多
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au?Cu system as an example, three discoveries and two methods were presented. First, a new way for boosting sustainable progress of systematic metal materials science (SMMS) and alloy gene engineering (AGE) is to establish holographic alloy positioning design (HAPD) system, of which the base consists of measurement and calculation center, SMMS center, AGE center, HAPD information center and HAPD cybernation center; Second, the resonance activating-sychro alternating mechanism of atom movement may be divided into the located and oriented diffuse modes; Third, the equilibrium and subequilibrium holographic network phase diagrams are blueprints and operable platform for researchers to discover, design, manufacture and deploy advanced alloys, which are obtained respectively by the equilibrium lever numerical method and cross point numerical method of isothermal Gibbs energy curves. As clicking each network point, the holographic information of three structure levels for the designed alloy may be readily obtained: the phase constitution and fraction, phase arranging structure and properties of organization; the composition, alloy gene arranging structure and properties of each phase and the electronic structures and properties of alloy genes. It will create a new era for network designing advanced alloys.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking AuCu3-type sublattice system as an example, three discoveries have been presented: First, the third barrier hindering the progress in metal materials science is that researchers have got used to recognizing experimental phenomena of alloy phase transitions during extremely slow variation in temperature by equilibrium thinking mode and then taking erroneous knowledge of experimental phenomena as selected information for establishing Gibbs energy function and so-called equilibrium phase diagram. Second, the equilibrium holographic network phase diagrams of AuCu3-type sublattice system may be used to describe systematic correlativity of the composition?temperature-dependent alloy gene arranging structures and complete thermodynamic properties, and to be a standard for studying experimental subequilibrium order-disorder transition. Third, the equilibrium transition of each alloy is a homogeneous single-phase rather than a heterogeneous two-phase, and there exists a single-phase boundary curve without two-phase region of the ordered and disordered phases; the composition and temperature of the top point on the phase-boundary curve are far away from the ones of the critical point of the AuCu3 compound.
基金Project(51071181)supported by the National Natural Science Foundation of ChinaProject(2013FJ4043)supported by the Natural Science Foundation of Hunan Province,China
文摘Taking Au3Cu-type sublattice system as an example, three discoveries have been presented. First, the fourth barrier to hinder the progress of metal materials science is that today’s researchers do not understand that the Gibbs energy function of an alloy phase should be derived from Gibbs energy partition function constructed of alloy gene sequence and their Gibbs energy sequence. Second, the six rules for establishing alloy gene Gibbs energy partition function have been discovered, and it has been specially proved that the probabilities of structure units occupied at the Gibbs energy levels in the degeneracy factor for calculating configuration entropy should be degenerated as ones of component atoms occupied at the lattice points. Third, the main characteristics unexpected by today’s researchers are as follows. There exists a single-phase boundary curve without two-phase region coexisting by the ordered and disordered phases. The composition and temperature of the top point on the phase-boundary curve are far away from those of the critical point of the Au3Cu compound; At 0 K, the composition of the lowest point on the composition-dependent Gibbs energy curve is notably deviated from that of the Au3Cu compounds. The theoretical limit composition range of long range ordered Au3Cu-type alloys is determined by the first jumping order degree.
基金partially funded by the United States Army Research Laboratory (ARL)Terves LLC。
文摘Mg-rare earth(RE)based systems provide several important commercial alloys and many alloy development opportunities for high strength applications,especially in aerospace and defense industries.The phase diagrams,microstructure,and strengthening mechanisms of these multicomponent systems are very complex and often not well understood in literature.We have calculated phase diagrams of important binary,ternary,and multicomponent RE-containing alloy systems,using CALPHAD(CALculation of PHAse Diagrams).Based on these phase diagrams,this paper offers a critical overview on phase equilibria and strengthening mechanisms in these alloy systems,including precipitation,long period stacking order(LPSO),and other intermetallic phases.This review also summarized several promising Mg-RE based cast alloys in comparison with commercial WE54 and WE43 alloys;and explored new strategies for future alloy development for high strength applications.It is pointed out that the combination of precipitation and LPSO phases can lead to superior strength and ductility in Mg-RE based cast alloys.The precipitates and LPSO phases can form a complex three-dimensional network that effectively impedes dislocation motion on the basal and non-basal planes.The LPSO phases can also prevent the coarsening of precipitates when they interact,thus providing good thermal stability at elevated temperatures.Future research is needed to determine how the combination of these two types of phases can be used in alloy design and industrial scale applications.
文摘The relationship between the types of binary alloy phase diagramsof VIII and Ib group elements and the Men- deleev numbers wasdiscussed for the first time using the VIII and IB group elements assolvent metals (A) and the other elements as solute metals (B),basesd on their alloy phase diagram types. The Mendeleev numbers ofthe solvent metals and the solute metals were expressed as M_A andM_B, respectively. A two-dimension map of M_A/M_B was drawn. It isindi- cated that there is an oblique line in the map, which dividesthe binary alloy phase diagram types of solvent metals into twosymmetry parts, the phase diagram types of the other elements withsolvent metals located at the above or down of the line respectively,while on the line, △M = 0.
文摘everal vertical sections of the phase diagram of Cd-Sn-Zn system with a constant mole fraction X_(cd)=0.2 were determined by means of differential thermal anal- ysis(DTA)at high pres:ures 0.0,0.5,1.5,and 2. 0 GPa respectively. The eutectic temperature of the system increases by about 50K from atmospheric pressure to the high pressure 2.0 GPa,but the ternary eutectic composition changes slightly with the pressure chnge.
文摘The room temperature phase diagram of Al-Zn-Cu system is the important basis for judging the phase constituents of the materials at the usage condition. New results about the room temperature phase diagram of the low copper side in the Al-Zn-Cu systems have been shown in this study. Miscibility gap of fcc phase in the Al-Zn-Cu system has also been studied by experimental diffusion-couple method and thermodynamic calculation. Properties of this miscibility gap have been known. It is practically significant for the study on the aging behavior and for the control of the microstructure and properties of the Al alloys with Zn and Cu element.
文摘An effective method was proposed to establish the continuous cooling transformation(CCT) diagrams of aluminum alloys using in situ voltage measurement.The voltage change of samples with predefined dimension was recorded under the constant current state during continuous cooling.Solutionizing time,together with starting and finishing temperatures of phase transformation of the alloy can be obtained from relationships of voltage vs time and temperature.A critical cooling rate without detectable phase transition during continuous cooling can be determined.Continuous cooling transformation diagrams of tested samples can be established conveniently based on these results.Microstructure observation and differential scanning calorimetry(DSC) testing were applied to verify the reliability of continuous cooling transformation diagram.
基金Project (51171069) supported by the National Natural Science Foundation of ChinaProject (S2011010004094) supported by Natural Science Foundation of Guangdong Province, ChinaProject support by the Special Talents of Higher Education Office of Guangdong Province ,China
文摘The Ce-La-O system was investigated via experiments and thermodynamic modeling. A series of CeO2-LaO1.5 mixtures were prepared by co-precipitation technique and examined by X-ray diffraction. Mutual solubilities between LaO1.5 and CeO2 at 1273 K were determined. Using the new experimental data together with literature information, a set of self-consistent thermodynamic parameters for the CeO2-LaO1.5 system were optimized. Combined with thermodynamic descriptions of Ce-O and La-O systems from literature, several property diagrams of Ce-La-O system were calculated and used to explain oxidation process of the Ce-La alloys. The fluorite phase is the unique oxidation products for most of the Ce-La alloys.
基金This study was financially supported by the National Natural Science Foundation of China and Chongqing Science and Technology Commission.
文摘The Mg-Al-Zn-Y-Ce system is one of the key systems for designing high-strength Mg alloys. The purpose of the present article is to develop a thermodynamic database for the Mg-Al-Zn-Y-Ce multicomponent system to design Mg alloys using the calculation of phase diagrams (CALPHAD) method, where the Gibbs energies of solution phases such as liquid, fcc, bcc, and hcp phases were described by the subregular solution model, whereas those of all the compounds were described by the sublattice model. The thermodynamic parameters describing Gibbs energies of the different phases in this database were evaluated by fitting the experimental data for phase equilibria and thermodynamic properties. On the basis of this database, a lot of information concerning stable and metastable phase equilibria of isothermal and vertical sections, molar fractions of constituent phases, the liquidus projection, etc., can be predicted. This database is expected to play an important role in the design of Mg alloys.
基金financially supported by the Natural Science Foundation of China(No.51761007)the Guangxi Natural Science Foundation,China(Nos.2019GXNSFAA245003,2018GXNSFAA294069,2020GXNSFFA297004,2021GXNSFDA075009)+5 种基金the Guangxi Project of Science and Technology,China(Nos.AD19110078,AA18242023-1)the Scientific Research Foundation of Guilin University of Electronic Technology,China(No.UF18016)the Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials(No.2019GXYSOF08),Chinathe Guangxi Key Laboratory of Information Materials,China(No.191012-Z)the National Key R&D Program of China(No.2016YFB0700901)financial support from the foundation for Guangxi Bagui scholars,China。
文摘The vertical sections of the La−Fe−B system were investigated using electron probe microanalysis and differential thermal analysis.Based on the microstructures and phase compositions of the as-cast and equilibrium alloys,together with their heat flow−temperature curves,phase diagrams for three vertical sections were drawn:La_(x)Fe_(82)B_(y)(x+y=18),La_(x)Fe_(70)B_(y)(x+y=30)and La_(x)Fe_(53)B_(y)(x+y=47),where x and y represent mass fraction of La and B,respectively,%.Additionally,according to the phase diagrams,the compound La2Fe14B was identified as a stable phase at high temperatures.It was found to be stable between 926.2 and 792.6℃;at low temperatures,however,it decomposed into α-La,α-Fe and LaFe_(4)B_(4),according to the reaction La_(2)Fe_(14)B→α-Fe+α-La+LaFe_(4)B_(4).
基金Project(2006DFB53050) supported by the International Science and Technology Cooperation Project of the Science and Technology Ministry of China
文摘The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃,and the three two-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2,FCC-A1(Cu-rich)+δ-Ni2Si and FCC-A1(Cu-rich)+ε-Ni3Si2,two three-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2+δ-Ni2Si and FCC-A1(Cu-rich)+δ-Ni2Si+ε-Ni3Si2. For this reason,an alloy located in the Cu-rich portion may precipitate γ-Ni5Si2,δ-Ni2Si or ε-Ni3Si2;the proportion of each phase depends on the alloy composition and aging temperature. The transmission electron microscope analysis of the Cu-3.2Ni-0.75Si alloy indicates that the precipitates are mainly δ-Ni2Si with only a few γ-Ni5Si2 phase particles,which agrees well with the thermodynamic calculations of phase equilibria.
基金Sponsored by the Natural Science Foundation of Hebei Province for Distinguished Young Scholars(Grant No.E2011203131)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province(Grant No.E2013203110)
文摘The pseudo-equilibrium phase diagram and continuous cooling transformation diagram of an N-containing 8% Cr roller steel were investigated by using thermodynamic calculation,differential scanning calorimetry,Ⅹ-ray diffraction,expansion method,and so on.Under equilibrium conditions,the main carbonitrides are MX,M7C3,and M23C6 types.The measured Ac1,Ac3,start temperature of martensitic transformation,and M7C3 transformation temperatures are 811,855,324,and 1100 ℃,respectively.Bainite appears at cooling rates ranging from 0.5 to 5 ℃/s and ferrite forms at grain boundaries at a cooling rate lower than 0.5 ℃/s.Finally,the effects of adding N and lowering the C content on workability and mechanical properties of common 8%Cr steel were discussed.
文摘On the basis of the Ag-Pd-Gd, Ag-Ru-Gd and Pd-Ru-Gd ternary systems, the partial phase diagram of Pd-Ag-Ru-Gd(Gd<25% atom fraction) quaternary system has been studied by means of X-ray diffraction analysis, differential thermal analysis, electron probe microanalysis and optical microscopy. The 700℃ isothermal sections of the Ag-Pd-5Ru-Gd, Ag-Pd-20Ru-Gd and Ag-Pd-50Ru-Gd (Gd≤25% atom fraction) phase diagrams were determined respectively. And the 700℃ isothermal section of the Pd-Ag-Ru-Gd (Gd≤25% atom fraction) quaternary system phase diagram was finally inferred. The section consists of four single-phase regions: solid solution Pd(Ag), (Ru), Pd3Gd and Ag 51 Gd 14 ; five two-phase regions: Pd(Ag)+(Ru), Pd(Ag)+ Ag 51 Gd 14 , (Ru)+ Ag 51 Gd 14 , Pd(Ag)+ Pd3Gd and (Ru)+ Pd3Gd; three three-phase regions: Pd(Ag)+ Pd3Gd+(Ru), Pd(Ag)+ Ag 51 Gd 14 +(Ru) and (Ru)+ Ag 51 Gd 14 + Pd3Gd; one four-phase region Pd(Ag)+ (Ru)+ Ag 51 Gd 14 + Pd3Gd. No new quaternary intermetallic phase is found.
基金Project(2012CB619504)supported by the National Basic Research Program of ChinaProject(51271037)supported by the National Natural Science Foundation of ChinaProject(2010DFB50340)supported by International Scientific and Technological Cooperation Projects of China
文摘Phase fraction and solidification path of high Zn-containing Al-Zn-Mg-Cu series aluminum alloy were calculated by calculation of phase diagram (CALPHAD) method. Microstructure and phases of Al-9.2Zn-1.7Mg-2.3Cu alloy were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The calculation results show that η(MgZn2) phase is influenced by Zn and Mg. Mass fractions of η(MgZn2) in Al-xZn-1.7Mg-2.3Cu are 10.0%, 9.8% and 9.2% for x=9.6, 9.4, 8.8 (mass fraction, %), respectively. The intervals of Mg composition were achieved for θ(Al2Cu)+η(MgZn2), S(Al2CuMg)+η(MgZn2) and θ(Al2Cu)+S(Al2CuMg)+η(MgZn2) phase regions. Al3Zr, α(Al), Al13Fe4, η(MgZn2), α-AlFeSi, Al7Cu2Fe, θ(Al2Cu), Al5Cu2MgsSi6 precipitate in sequence by no-equilibrium calculation. The SEM and XRD analyses reveal that α(Al), η(MgZn2), Mg(Al,Cu,Zn)2, θ(Al2Cu) and Al7Cu2Fe phases are discovered in Al-9.2Zn-1.7Mg-2.3Cu alloy. The thermodynamic calculation can be used to predict the major phases present in experiment.