Some properties of the wavelet transform of trigonometric Junction, periodic function and nonstationary periodic function have been investigated. The results show that the peak height and width in wavelet energy spect...Some properties of the wavelet transform of trigonometric Junction, periodic function and nonstationary periodic function have been investigated. The results show that the peak height and width in wavelet energy spectrum of a periodic function are in proportion to its period. At the same time, a new equation, which can truly reconstruct a trigonometric function with only one scale wavelet coefficient, is presented. The reconstructed wave shape of a periodic function with the equation is better than any term of its Fourier series. And the reconstructed wave shape of a class of nonstationary periodic function with this equation agrees well with the function.展开更多
The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wave...The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wavelet, and research the local extreme point and extrema of the wavelet transform on periodic function for the collection of signal' s instantaneous amplitude and period.展开更多
将行波变换下修正的双Jacob i椭圆函数展开法推广到范围非常广泛的一般函数变换下进行,利用这一方法求得了K le in-Gordon方程的更多新的周期解,补充了前面研究的结果.当模m→1或m→0时,这些解退化为相应的孤波解、三角函数解和奇异的...将行波变换下修正的双Jacob i椭圆函数展开法推广到范围非常广泛的一般函数变换下进行,利用这一方法求得了K le in-Gordon方程的更多新的周期解,补充了前面研究的结果.当模m→1或m→0时,这些解退化为相应的孤波解、三角函数解和奇异的行波解.展开更多
In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By usin...In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.展开更多
In this paper,we construct the rogue wave solutions of the sixth-order nonlinear Schrodinger equation on a background of Jacobian elliptic functions dn and cn by means of the nonlinearization of a spectral problem and...In this paper,we construct the rogue wave solutions of the sixth-order nonlinear Schrodinger equation on a background of Jacobian elliptic functions dn and cn by means of the nonlinearization of a spectral problem and Darboux transformation approach.The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.展开更多
基金Foundation items:the National Development Programming of Key Fundamental Researches of China(G1999022103)Planed Item for Distinguished Teacher Invested by Minisny of Education PRC
文摘Some properties of the wavelet transform of trigonometric Junction, periodic function and nonstationary periodic function have been investigated. The results show that the peak height and width in wavelet energy spectrum of a periodic function are in proportion to its period. At the same time, a new equation, which can truly reconstruct a trigonometric function with only one scale wavelet coefficient, is presented. The reconstructed wave shape of a periodic function with the equation is better than any term of its Fourier series. And the reconstructed wave shape of a class of nonstationary periodic function with this equation agrees well with the function.
基金Supported by the National Natural Science Founda-tion of China (49771060)
文摘The theory of detecling ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges,To periodic signal we suppose Morlet wavelet as basic wavelet, and research the local extreme point and extrema of the wavelet transform on periodic function for the collection of signal' s instantaneous amplitude and period.
基金supported by the National Natural Science Foundation of China (Grant No. 12 361 052)the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant Nos. 2020LH01010, 2022ZD05)+2 种基金the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region (Grant No. NMGIRT2414)the Fundamental Research Funds for the Inner Mongolia Normal University, China (Grant No. 2022JBTD007)the Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), and the Ministry of Education (Grant Nos. 2023KFZR01, 2023KFZR02)
文摘In this paper, the rogue wave solutions of the(2+1)-dimensional Myrzakulov–Lakshmanan(ML)-Ⅳ equation, which is described by five component nonlinear evolution equations, are studied on a periodic background. By using the Jacobian elliptic function expansion method, the Darboux transformation(DT) method and the nonlinearization of the Lax pair, two kinds of rogue wave solutions which are expressed by Jacobian elliptic functions dn and cn, are obtained.The relationship between these five kinds of potential is summarized systematically. Firstly, the periodic rogue wave solution of one potential is obtained, and then the periodic rogue wave solutions of the other four potentials are obtained directly. The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11861050,11261037)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2020LH01010)the Inner Mongolia Normal University Graduate Students Research and Innovation Fund(Grant No.CXJJS21119)。
文摘In this paper,we construct the rogue wave solutions of the sixth-order nonlinear Schrodinger equation on a background of Jacobian elliptic functions dn and cn by means of the nonlinearization of a spectral problem and Darboux transformation approach.The solutions we find present the dynamic phenomena of higher-order nonlinear wave equations.