Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photorespo...Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.展开更多
FeCI3-intercalated graphite intercalation compounds (GICs) with high reversible capacity and high volumetric energy density are attractive anode material alternatives of commercial graphite. However, the rapid capacit...FeCI3-intercalated graphite intercalation compounds (GICs) with high reversible capacity and high volumetric energy density are attractive anode material alternatives of commercial graphite. However, the rapid capacity decay, which was induced by chloride dissolution and shuttling issues, hindered their practical application. To address this problem, here, we introduce flake-like Fe2O3 species with inherently polar surface on the edge of FeCl3 -intercalated GICs through microwave-assisted transformation of a fraction of FeCl3 component. Theoretical simulations and physical/electrochemical studies demonstrate that the introduced Fe2O3 component can afford sufficient polar active sites for chemically bonding the soluble FeCl3 and LiCl species based on the polar-polar interaction mechanism, further inhibiting the outward diffusion of the chlorides and immobilizing them within the GIC material. In a lithium ion cell, the FeCl3 -intercalated GIC with a suitable Fe2O3 content shows remarkably improved cycling stability with a high reversible capacity of 1,041 mAh·g^-1 at a current density of 200 mA·g^-1. Capacity retention of 91 % is achieved at a high current density of 1,000 mA·g^-1 over 300 cycles. This work opens up the new prospect for immobilizing chlorides by introducing inorganic species in GIC for long-cycle electrochemical batteries.展开更多
Infrared photodetectors have attracted much attention considering their wide civil and military applications.Two-dimensional(2D)materials offer new opportunities for the development of costless,high-level integration ...Infrared photodetectors have attracted much attention considering their wide civil and military applications.Two-dimensional(2D)materials offer new opportunities for the development of costless,high-level integration and high-performance infrared photodetectors.With the advent of a broad investigation of infrared photodetectors based on graphene and transition metal chalcogenides(TMDs)exhibiting unique properties in recent decades,research on the better performance of 2D-based infrared photodetectors has been extended to a larger scale,including explorations of new materials and artificial structure designs.In this review,after a brief background introduction,some major working mechanisms,including the photovoltaic effect,photoconductive effect,photogating effect,photothermoelectric effect and bolometric effect,are briefly offered.Then,the discussion mainly focuses on the recent progress of three categories of 2D materials beyond graphene and TMDs.Noble transition metal dichalcogenides,black phosphorus and arsenic black phosphorous and 2D ternary compounds are great examples of explorations of mid-wavelength or even long-wavelength 2D infrared photodetectors.Then,four types of rational structure designs,including type-II band alignments,photogating-enhanced designs,surface plasmon designs and ferroelectric-enhanced designs,are discussed to further enhance the performance via diverse mechanisms,which involve the narrower-bandgap-induced interlayer exciton transition,gate modulation by trapped carriers,surface plasmon polaritons and ferroelectric polarization in sequence.Furthermore,applications including imaging,flexible devices and on-chip integration for 2D-based infrared photodetectors are introduced.Finally,a summary of the state-of-the-art research status and personal discussion on the challenges are delivered.展开更多
基金Supported by the National Key Research and Development Program of China (Grant Nos.2017YFA0403600 and 2016YFA0300404)the National Natural Science Foundation of China (Grant Nos.11874363,11974356 and U1932216)the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP002)。
文摘Atomically thin two-dimensional(2D) materials are the building bricks for next-generation electronics and optoelectronics, which demand plentiful functional properties in mechanics, transport, magnetism and photoresponse.For electronic devices, not only metals and high-performance semiconductors but also insulators and dielectric materials are highly desirable. Layered structures composed of 2D materials of different properties can be delicately designed as various useful heterojunction or homojunction devices, in which the designs on the same material(namely homojunction) are of special interest because preparation techniques can be greatly simplified and atomically seamless interfaces can be achieved. We demonstrate that the insulating pristine ZnPS_3, a ternary transition-metal phosphorus trichalcogenide, can be transformed into a highly conductive metal and an n-type semiconductor by intercalating Co and Cu atoms, respectively. The field-effect-transistor(FET) devices are prepared via an ultraviolet exposure lithography technique. The Co-ZnPS_3 device exhibits an electrical conductivity of 8 × 10^(4) S/m, which is comparable to the conductivity of graphene. The Cu-ZnPS_3 FET reveals a current ON/OFF ratio of 1-05 and a mobility of 3 × 10^(-2 )cm^(2)·V^(-1)·s^(-1). The realization of an insulator, a typical semiconductor and a metallic state in the same 2D material provides an opportunity to fabricate n-metal homojunctions and other in-plane electronic functional devices.
基金the National Natural Science Foundation of China (No.51502086)Natural Science Foundation of Hunan Province (No.2018JJ3042)Hunan Province Science and Technology Plan Projects (No.2017TP1009).
文摘FeCI3-intercalated graphite intercalation compounds (GICs) with high reversible capacity and high volumetric energy density are attractive anode material alternatives of commercial graphite. However, the rapid capacity decay, which was induced by chloride dissolution and shuttling issues, hindered their practical application. To address this problem, here, we introduce flake-like Fe2O3 species with inherently polar surface on the edge of FeCl3 -intercalated GICs through microwave-assisted transformation of a fraction of FeCl3 component. Theoretical simulations and physical/electrochemical studies demonstrate that the introduced Fe2O3 component can afford sufficient polar active sites for chemically bonding the soluble FeCl3 and LiCl species based on the polar-polar interaction mechanism, further inhibiting the outward diffusion of the chlorides and immobilizing them within the GIC material. In a lithium ion cell, the FeCl3 -intercalated GIC with a suitable Fe2O3 content shows remarkably improved cycling stability with a high reversible capacity of 1,041 mAh·g^-1 at a current density of 200 mA·g^-1. Capacity retention of 91 % is achieved at a high current density of 1,000 mA·g^-1 over 300 cycles. This work opens up the new prospect for immobilizing chlorides by introducing inorganic species in GIC for long-cycle electrochemical batteries.
基金the National Natural Science Foundation of China(No.52072308)the Open Project of Basic Research of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing(No.AMGM2022F02)the Fundamental Research Funds for the Central Universities(Nos.3102021MS0404 and 3102019JC001).
文摘Infrared photodetectors have attracted much attention considering their wide civil and military applications.Two-dimensional(2D)materials offer new opportunities for the development of costless,high-level integration and high-performance infrared photodetectors.With the advent of a broad investigation of infrared photodetectors based on graphene and transition metal chalcogenides(TMDs)exhibiting unique properties in recent decades,research on the better performance of 2D-based infrared photodetectors has been extended to a larger scale,including explorations of new materials and artificial structure designs.In this review,after a brief background introduction,some major working mechanisms,including the photovoltaic effect,photoconductive effect,photogating effect,photothermoelectric effect and bolometric effect,are briefly offered.Then,the discussion mainly focuses on the recent progress of three categories of 2D materials beyond graphene and TMDs.Noble transition metal dichalcogenides,black phosphorus and arsenic black phosphorous and 2D ternary compounds are great examples of explorations of mid-wavelength or even long-wavelength 2D infrared photodetectors.Then,four types of rational structure designs,including type-II band alignments,photogating-enhanced designs,surface plasmon designs and ferroelectric-enhanced designs,are discussed to further enhance the performance via diverse mechanisms,which involve the narrower-bandgap-induced interlayer exciton transition,gate modulation by trapped carriers,surface plasmon polaritons and ferroelectric polarization in sequence.Furthermore,applications including imaging,flexible devices and on-chip integration for 2D-based infrared photodetectors are introduced.Finally,a summary of the state-of-the-art research status and personal discussion on the challenges are delivered.