An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the ca...An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.展开更多
Harmonic RF cavities are commonly used in storage rings to lengthen the bunches and thus suppress the beam's instabilities and increase its Touschek lifetime. The voltage and phase of the electromagnetic fields in...Harmonic RF cavities are commonly used in storage rings to lengthen the bunches and thus suppress the beam's instabilities and increase its Touschek lifetime. The voltage and phase of the electromagnetic fields in the harmonic cavity are of great importance for stretching the bunch. In the Hefei Light Source storage ring, a passive fourth-harmonic cavity is installed, and the cavity is monitored and controlled by an analog control module provided by its manufacturer. To vary and maintain the voltage of the harmonic cavity in a more effective way, a digital proportional, integral, and derivative feedback system based on the Experimental Physics and Industrial Control System is developed on top of the analog control module. This paper reports the details of the development of this voltage control system. Some test and operational results are also presented.展开更多
The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-ca...The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.展开更多
AIM: To observe the changes of vitreous cavity length and diopter after scleral encircling(SE) produce.·METHODS: This prospective study included 68 eyes of68 non-consecutive patients with macula-off retinal d...AIM: To observe the changes of vitreous cavity length and diopter after scleral encircling(SE) produce.·METHODS: This prospective study included 68 eyes of68 non-consecutive patients with macula-off retinal detachment who were operated by SE surgery. The corneal refractive power, ocular axial length and diopter were measured by keratometer, A-mode ultrasonic meter and computed dioptometer.· RESULTS: There was no significant difference in corneal refractive power among preoperative and post operative 1, 3 and 6mo(0.57±0.54 D at pre-surgery; 0.72±0.26 D at 1mo; 0.71 ±0.34 D at 3mo; 0.69 ±0.31 D at 6mo;all P 〉0.05). Axial lengths were obviously lengthened,especially in vitreous cavity length(17.87 ±3.09 mm,19.69 ±3.12 mm, 18.97 ±3.56 mm, 18.76 ±3.47 mm, 18.68 ±3.42 mm at pre-surgery, 1wk, 1, 3 and 6mo postoperatively,P 〈0.05) and diopter also increased at beginning and then recovered gradually. After 1 and 3 mo, axial length(vitreous cavity length) and myopia were more and in higher degree than before surgery.·CONCLUSION: The change of postoperative vitreous cavity length is the main factor that results in the changes of axial length and then makes the change of diopter.展开更多
Figs (Moracea: Ficus) and fig wasps (Hymenoptera: Chlocloids: Agaonideae) depend on each other to complete their reproduction. Monoecious fig species and their pollinating wasps are in conflict over the use of fig ov...Figs (Moracea: Ficus) and fig wasps (Hymenoptera: Chlocloids: Agaonideae) depend on each other to complete their reproduction. Monoecious fig species and their pollinating wasps are in conflict over the use of fig ovaries which can either produce one seed or one wasp. From observation on Ficus virens Ait., we showed that female flowers with outer layer of ovaries (near to the wall of syconium) had no significant difference from that with inner and interval layer of ovaries (near to the syconium cavity), in which most seeds and wasps were produced. This meant that fig tree provided the same potential resource for seed and wasps production. Observation indicated that there was usually only one foundress in syconium at female flower phase and no com- petition pollinators. Measurement of the style length of female flowers and the ovipositor of pollinators indicated that most ovaries could be reached by pollinator’s ovipositor. However, at the male flower phase, production of seeds was significantly more than that of wasps including non-pollinating wasps but there was no significant difference between seed and pollinating wasp production when without non-pollinating wasps produced. This result indicated that non-pollinating wasps competed ovaries not with seeds but with pollinating wasps for ovipositing. Bagged experiment showed that the sampling fig species was not self-sterile which was important for figs and wasps to survive bad season. Seed production in self-pollinated figs was not significantly different from total wasps in- cluding non-pollinating ones. This might be related with the weaker competition among wasps since bagged figs were not easy to reach by wasps from outside.展开更多
We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity la...We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.展开更多
Based on finite volume method, subsonic and transonic flow in 3-D cavity of different length-to-depth ratios are numerically investigated by using Navier-Stokes equations with k-ε SST two-equation turbulence model an...Based on finite volume method, subsonic and transonic flow in 3-D cavity of different length-to-depth ratios are numerically investigated by using Navier-Stokes equations with k-ε SST two-equation turbulence model and coupled implicit algorithm. The cavity streamline patterns and the static pressure coefficient distributions on the cavity floor are shown, and the flow characteristics of the cavity and the floor pressure coefficient distributions are analyzed. Numerical results demon- strate that the flow characteristics of the cavity at subsonic and transonic speeds are different from that of supersonic ones; length-to-depth ratio is the main factor that affects the flow characteristics of the cavity at subsonic and transonic number has a neglectable effect on the cavity floor pressure distributions. speeds and causes changes of the cavity flow type; Mach cavity flow fields at subsonic and transonic speeds and the展开更多
FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm...FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm. In this paper, we numerically study the output characteristics of the middle-infrared oscillator with accurate cavity length detuning. Emphasis is put on the temporal structure of the micropulse and the corresponding spectral bandwidth.Taking the radiation wavelengths of 50 μm and 5 μm as examples, we show that the output pulse duration can be tuned in the range of 1–6 ps with corresponding bandwidth of 13%–0.2% by adjusting the cavity length detuning.In addition, a special discussion on the comb structure is presented, and it is indicated that the comb structure may arise in the output optical pulse when the normalized slippage length is much smaller than unity. This work has reference value for the operation of FELiChEM and other FEL oscillators.展开更多
In order to study cavitation characteristics of a 2-D hydrofoil, the method that combines nonlinear cavitation model and mixed-iteration is used to predict and analyze the cavitation performance of hydrofoils. The cav...In order to study cavitation characteristics of a 2-D hydrofoil, the method that combines nonlinear cavitation model and mixed-iteration is used to predict and analyze the cavitation performance of hydrofoils. The cavitation elements are nonlinearly disposed based on the Green formula and perturbation potential panel method. At the same time, the method that combines cavity shape for fixed cavity length (CSCL) iteration and cavity shape for fixed cavitation number (CSCN) iteration is used to work out the thickness and length of hydrofoil cavitations. Through analysis of calculation results, it can be concluded that the jump of pressure and velocity potentially exist between cavitation end area and non-cavitations area on suction surface when cavitation occurs on hydrofoil. In certain angles of attack, the cavitation number has a negative impact on the length of cavitations. And under the same angle of attack and cavitation number, the bigger the thickness of the hydrofoil, the shorter the cavitations length.展开更多
Using the Hefei Light Source phase Ⅱ project (HLS- Ⅱ) as an example, a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity (HHC) is given. The threshold voltage of an active HHC a...Using the Hefei Light Source phase Ⅱ project (HLS- Ⅱ) as an example, a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity (HHC) is given. The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed. The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented. The calculated results show that the reduced bunch length is about half that of the nominal bunch. The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario, while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario. In addition, the synchrotron frequency spread is increased. It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.展开更多
In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development p...In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development process of self-excited oscillation pulsed SC-CO_(2)jet,the variation of jet impact frequency in the nozzle and the free flow field,and the variation of jet impact frequency at different positions in the jet axis and under different cavity lengths.The test device of jet impact frequency was developed,and experiments were performed to verify the conclusions of the numerical simulations.The results show that the frequency of the self-excited oscillation pulsed SC-CO_(2)jet is different in the nozzle and the free flow field.In the nozzle,the frequency generated by the fluid disturbance is the same,and the jet frequency at the exit of the nozzle is consistent with that inside the nozzle.In the free flow field,due to the compressibility of CO_(2),the pressure,velocity and other parameters of SC-CO_(2)jets have obvious fluctuation patterns.This feature causes the impact frequency of the self-excited oscillation pulsed SC-CO_(2)jet to decrease gradually in the axis.Changing the cavity length allows the adjustment of the jet impact frequency in the free flow field by affecting the disturbance frequency of the self-excited oscillation pulsed SC-CO_(2)jet inside the nozzle.展开更多
Aerators on discharge tunnel outlets may be regarded as an effective protection against cavitation erosion. The air entrainment of aerators is governed by a number of independent parameters, including the bottom slope...Aerators on discharge tunnel outlets may be regarded as an effective protection against cavitation erosion. The air entrainment of aerators is governed by a number of independent parameters, including the bottom slope of releasing free-surface flow tunnel downstream of service gate, the end top slope of pressure tunnel, the height of step, and the Froude number at take-off. During eight phases of experiments, the effects of above-mentioned parameters were observed on the cavity length downstream of the fully open operating service gate of a discharge tunnel. The results show that, the bottom slope of releasing free-surface flow tunnel has obvious effect on the cavity length as well as the Froude number at gate take-off. The effect of the step height variations on the cavity length could be considered for higher discharges and steeper tunnel top slope, particularly in higher discharges, resulting in shorter cavity length downstream of service gate.展开更多
RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment...RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment. Detailed discussion and calculation for measuring the 3.5 MeV bunch and another with further acceleration to 50 MeV, which is under development, are presented. A standing-wave deflecting cavity working at 2856 MHz is designed and the power feeding system has been planned.展开更多
文摘An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.
基金supported by the National Natural Science Foundation of China(No.11375177)
文摘Harmonic RF cavities are commonly used in storage rings to lengthen the bunches and thus suppress the beam's instabilities and increase its Touschek lifetime. The voltage and phase of the electromagnetic fields in the harmonic cavity are of great importance for stretching the bunch. In the Hefei Light Source storage ring, a passive fourth-harmonic cavity is installed, and the cavity is monitored and controlled by an analog control module provided by its manufacturer. To vary and maintain the voltage of the harmonic cavity in a more effective way, a digital proportional, integral, and derivative feedback system based on the Experimental Physics and Industrial Control System is developed on top of the analog control module. This paper reports the details of the development of this voltage control system. Some test and operational results are also presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science&Technology Cooperation Program of China under Grant No 2010DFR10900
文摘The experimental scheme of 633 nm and 1359 nm good-bad cavity dual-wavelength active optical frequency stan- dard is proposed, where He-Ne 633nm and Cs 1359nm stimulated emissions are working at good-cavity and bad-cavity regimes, respectively. The cavity length is stabilized by locking the 633nm output frequency to a super-cavity with the Pound Drever-Hall (PDH) technique. The frequency stability of 1359 nm bad-cavity stim- ulated emission output is then expected to be further improved by at least 1 order of magnitude than the 633nm PDH system due to the suppressed cavity pulling effect of active optical clock, and the quantum limited linewidth of 1359nm output is estimated to be 72.5 mHz.
基金Supported by the Natural Science Foundation of Anhui Province(No.1508085MH188)Science Foundation of Anhui Provincial health Bureau(No.13zc046)
文摘AIM: To observe the changes of vitreous cavity length and diopter after scleral encircling(SE) produce.·METHODS: This prospective study included 68 eyes of68 non-consecutive patients with macula-off retinal detachment who were operated by SE surgery. The corneal refractive power, ocular axial length and diopter were measured by keratometer, A-mode ultrasonic meter and computed dioptometer.· RESULTS: There was no significant difference in corneal refractive power among preoperative and post operative 1, 3 and 6mo(0.57±0.54 D at pre-surgery; 0.72±0.26 D at 1mo; 0.71 ±0.34 D at 3mo; 0.69 ±0.31 D at 6mo;all P 〉0.05). Axial lengths were obviously lengthened,especially in vitreous cavity length(17.87 ±3.09 mm,19.69 ±3.12 mm, 18.97 ±3.56 mm, 18.76 ±3.47 mm, 18.68 ±3.42 mm at pre-surgery, 1wk, 1, 3 and 6mo postoperatively,P 〈0.05) and diopter also increased at beginning and then recovered gradually. After 1 and 3 mo, axial length(vitreous cavity length) and myopia were more and in higher degree than before surgery.·CONCLUSION: The change of postoperative vitreous cavity length is the main factor that results in the changes of axial length and then makes the change of diopter.
基金Supported by the Knowledge Innovation Research Program,Chinese Academy of Sciences (KSCX2-SW-105)
文摘Figs (Moracea: Ficus) and fig wasps (Hymenoptera: Chlocloids: Agaonideae) depend on each other to complete their reproduction. Monoecious fig species and their pollinating wasps are in conflict over the use of fig ovaries which can either produce one seed or one wasp. From observation on Ficus virens Ait., we showed that female flowers with outer layer of ovaries (near to the wall of syconium) had no significant difference from that with inner and interval layer of ovaries (near to the syconium cavity), in which most seeds and wasps were produced. This meant that fig tree provided the same potential resource for seed and wasps production. Observation indicated that there was usually only one foundress in syconium at female flower phase and no com- petition pollinators. Measurement of the style length of female flowers and the ovipositor of pollinators indicated that most ovaries could be reached by pollinator’s ovipositor. However, at the male flower phase, production of seeds was significantly more than that of wasps including non-pollinating wasps but there was no significant difference between seed and pollinating wasp production when without non-pollinating wasps produced. This result indicated that non-pollinating wasps competed ovaries not with seeds but with pollinating wasps for ovipositing. Bagged experiment showed that the sampling fig species was not self-sterile which was important for figs and wasps to survive bad season. Seed production in self-pollinated figs was not significantly different from total wasps in- cluding non-pollinating ones. This might be related with the weaker competition among wasps since bagged figs were not easy to reach by wasps from outside.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10874009,11074011 and 91436210the International Science and Technology Cooperation Program of China under Grant No 2010DFR10900
文摘We experimentally realize the dual-wavelength bad cavity laser for the first time. As the Cs cell temperature is kept between 118℃ and 144℃, both the 1359nm and 147Ohm lasing outputs of dual-wavelength bad cavity laser are detected. The laser output power of dual-wavelength bad cavity laser is measured when changing the 455 nm pumping laser frequency and power at 127℃ Cs cell temperature. Both the 1359 nm laser and the 1470 nm laser are working at the deep bad cavity regime, and the ratio between the linewidth of cavity mode and the laser gain bandwidth a ≈ 40 for 1359nm and 1470nm lasers. The 147Ohm laser linewidth is measured to be 407.3Hz. The dual-wavelength bad cavity laser operating on atomic transitions demonstrated here has a potential in the application as a stable optical local oscillator, even an active optical frequency standard directly in the future.
文摘Based on finite volume method, subsonic and transonic flow in 3-D cavity of different length-to-depth ratios are numerically investigated by using Navier-Stokes equations with k-ε SST two-equation turbulence model and coupled implicit algorithm. The cavity streamline patterns and the static pressure coefficient distributions on the cavity floor are shown, and the flow characteristics of the cavity and the floor pressure coefficient distributions are analyzed. Numerical results demon- strate that the flow characteristics of the cavity at subsonic and transonic speeds are different from that of supersonic ones; length-to-depth ratio is the main factor that affects the flow characteristics of the cavity at subsonic and transonic number has a neglectable effect on the cavity floor pressure distributions. speeds and causes changes of the cavity flow type; Mach cavity flow fields at subsonic and transonic speeds and the
基金Supported by National Natural Science Foundation of China(21327901,11205156)
文摘FELiChEM is an infrared free electron laser(FEL) facility currently under construction, which consists of two oscillators generating middle-infrared and far-infrared laser covering the spectral range of 2.5–200 μm. In this paper, we numerically study the output characteristics of the middle-infrared oscillator with accurate cavity length detuning. Emphasis is put on the temporal structure of the micropulse and the corresponding spectral bandwidth.Taking the radiation wavelengths of 50 μm and 5 μm as examples, we show that the output pulse duration can be tuned in the range of 1–6 ps with corresponding bandwidth of 13%–0.2% by adjusting the cavity length detuning.In addition, a special discussion on the comb structure is presented, and it is indicated that the comb structure may arise in the output optical pulse when the normalized slippage length is much smaller than unity. This work has reference value for the operation of FELiChEM and other FEL oscillators.
基金Supported by the National Natural Science Foundation of China (Grant No. 41176074) China Postdoctoral Science Foundation (Grant No.2012M512133) Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20102304120026)
文摘In order to study cavitation characteristics of a 2-D hydrofoil, the method that combines nonlinear cavitation model and mixed-iteration is used to predict and analyze the cavitation performance of hydrofoils. The cavitation elements are nonlinearly disposed based on the Green formula and perturbation potential panel method. At the same time, the method that combines cavity shape for fixed cavity length (CSCL) iteration and cavity shape for fixed cavitation number (CSCN) iteration is used to work out the thickness and length of hydrofoil cavitations. Through analysis of calculation results, it can be concluded that the jump of pressure and velocity potentially exist between cavitation end area and non-cavitations area on suction surface when cavitation occurs on hydrofoil. In certain angles of attack, the cavitation number has a negative impact on the length of cavitations. And under the same angle of attack and cavitation number, the bigger the thickness of the hydrofoil, the shorter the cavitations length.
基金Supported by National Nature Science Foundation of China(10675116)Major State Basic Research Development Programme of China(2011CB808301)
文摘Using the Hefei Light Source phase Ⅱ project (HLS- Ⅱ) as an example, a theoretical analysis of shortening the bunch lengths using a higher harmonic cavity (HHC) is given. The threshold voltage of an active HHC and the threshold tuning angle of a passive HHC are first analysed. The optimum tuning angle for the constant detuning scenario and the optimum harmonic voltage for the constant voltage scenario are presented. The calculated results show that the reduced bunch length is about half that of the nominal bunch. The bunch lengths vary from 11 mm at 0.1 A to 7 mm at 0.4 A for the constant detuning scenario, while the bunch lengths are around 7 mm over the beam current range for the constant voltage scenario. In addition, the synchrotron frequency spread is increased. It indicates that HHC may be used to reduce the bunch length and increase the Landau damping of synchrotron oscillations in a storage ring.
基金Supported by National Natural Science Foundation of China(52174170,51974109)Basic Research Funds of Henan Polytechnic University(NSFRF220205)Strategic Consulting Research Project of Henan Research Institute of China Engineering Science and Technology Development Strategy(2022HENZDB03)。
文摘In order to obtain the impact frequency of resonant coal breaking by self-excited oscillation pulsed supercritical carbon dioxide(SC-CO_(2))jet,large eddy simulation was used to analyze the formation and development process of self-excited oscillation pulsed SC-CO_(2)jet,the variation of jet impact frequency in the nozzle and the free flow field,and the variation of jet impact frequency at different positions in the jet axis and under different cavity lengths.The test device of jet impact frequency was developed,and experiments were performed to verify the conclusions of the numerical simulations.The results show that the frequency of the self-excited oscillation pulsed SC-CO_(2)jet is different in the nozzle and the free flow field.In the nozzle,the frequency generated by the fluid disturbance is the same,and the jet frequency at the exit of the nozzle is consistent with that inside the nozzle.In the free flow field,due to the compressibility of CO_(2),the pressure,velocity and other parameters of SC-CO_(2)jets have obvious fluctuation patterns.This feature causes the impact frequency of the self-excited oscillation pulsed SC-CO_(2)jet to decrease gradually in the axis.Changing the cavity length allows the adjustment of the jet impact frequency in the free flow field by affecting the disturbance frequency of the self-excited oscillation pulsed SC-CO_(2)jet inside the nozzle.
基金supported by the National Natural Science Foundation of China (Grand No.50879021)the Ministry of Science and Technology of China (Grant No2008BAB19B04)
文摘Aerators on discharge tunnel outlets may be regarded as an effective protection against cavitation erosion. The air entrainment of aerators is governed by a number of independent parameters, including the bottom slope of releasing free-surface flow tunnel downstream of service gate, the end top slope of pressure tunnel, the height of step, and the Froude number at take-off. During eight phases of experiments, the effects of above-mentioned parameters were observed on the cavity length downstream of the fully open operating service gate of a discharge tunnel. The results show that, the bottom slope of releasing free-surface flow tunnel has obvious effect on the cavity length as well as the Froude number at gate take-off. The effect of the step height variations on the cavity length could be considered for higher discharges and steeper tunnel top slope, particularly in higher discharges, resulting in shorter cavity length downstream of service gate.
基金National Natural Science Foundation of China (10775080)
文摘RF deflecting cavity can be used for bunch length measurement and is designed to diagnose the beam produced by the photocathode electron gun which was built at Tsinghua University for the Thomson scattering experiment. Detailed discussion and calculation for measuring the 3.5 MeV bunch and another with further acceleration to 50 MeV, which is under development, are presented. A standing-wave deflecting cavity working at 2856 MHz is designed and the power feeding system has been planned.