There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional le...There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.展开更多
To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits an...To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.展开更多
Floating car-and loop detector-based methods are two different types of methods frequently used to collect travel time delay information across a freeway network.Sometimes,it is necessary to use them jointly to achiev...Floating car-and loop detector-based methods are two different types of methods frequently used to collect travel time delay information across a freeway network.Sometimes,it is necessary to use them jointly to achieve the necessary freeway network coverage,due to the high labor costs for the floating car-based method and the indispensability of sufficient network instrumentation for the loop detector-based method.For example,both floating car-and loop detector-based methods were once used in the Highway Congestion Monitoring Program in the California Department of Transportation.It is therefore necessary to evaluate whether these two types of methods estimate similarly in terms of total travel time delay.To this end,corresponding delay information estimated using both types of methods from 37 freeway segments in the Greater Sacramento Area were collected and compared.It was found that these two types of methods do not estimate similarly in terms of total segment travel time delay.The mean absolute relative difference(MARD)can be as high as 78%,especially when delay is defined using a lower reference speed,such as 56 km/h.However,in terms of total segment travel time,the loop detector and the modified floating car method estimated similarly.The MARD is 19%.It was also found that the estimation from the different methods did correlate fairly well,which provides a means of conversion when different methods are used to monitor the total delay across a freeway network.As a spin-off,it was also found that a 1.5 km spacing of loop detectors is sufficient to achieve the 19%MARD as compared with the modified floating car method in terms of total travel time estimation.展开更多
Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up base...Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.展开更多
This paper offers a new method to solve the problem of software pipelininsr on nested loops. We first introduce our new software pipelininog method. Ruminate Method, which can optimize program with nested loops. We al...This paper offers a new method to solve the problem of software pipelininsr on nested loops. We first introduce our new software pipelininog method. Ruminate Method, which can optimize program with nested loops. We also outline an algorithm to realize it and introduce the hardware support we designed. The performance of Ruminate Method is analyzed at the end of this paper with the aid of our preliminary experimental result.展开更多
Phase locked loop(PLL) is a typical analog-digital mixed signal circuit and a method of conducting a top level system verification including PLL with standard digital simulator becomes especially significant.The behav...Phase locked loop(PLL) is a typical analog-digital mixed signal circuit and a method of conducting a top level system verification including PLL with standard digital simulator becomes especially significant.The behavioral level model(BLM) of the PLL in Verilog-HDL for pure digital simulator is innovated in this paper,and the design of PLL based clock and data recovery(CDR)circuit aided with jitter attenuation PLL for SerDes application is also presented.The CDR employs a dual-loop architecture where a frequency-locked loop acts as an acquisition aid to the phase-locked loop.To simultaneously meet jitter tolerance and jitter transfer specifications defined in G.8251 of optical transport network(ITU-T OTN),an additional jitter attenuation PLL is used.Simulation results show that the peak-to-peak jitter of the recovered clock and data is 5.17 ps and 2.3ps respectively.The core of the whole chip consumes 72 mA current from a 1.0V supply.展开更多
Due to its inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR) has been seen as one of the best candidates in building next generation nuclear plants (NGNPs). Since the MHTGR dynamics has ...Due to its inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR) has been seen as one of the best candidates in building next generation nuclear plants (NGNPs). Since the MHTGR dynamics has high nonlinearity, it is necessary to develop nonlinear power-level controller which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR but also easy to be implemented practically. In this paper, based on the concept of shiftedectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD) output-feedback power-level control can provide globally asymptotic closed-loop stability. Numerical simulation results verify the theoretical results and show the influence of the controller parameters to the dynamic response.展开更多
文摘There have been a large number of accidents at level crossings of railways and this has been considered to be a significant issue to be solved for the realization of safe and stable railway transport.A conventional level crossing control system is characterized by the use of two types of electronic train detectors;one detects a train approaching to a level crossing section and the other then detects the train having left the level crossing.By contrast,closed-loop level crossing control systems in which level crossing control equipment and train-borne equipment communicate with each other have been advocated and are expected to serve as an effective solution to the abovementioned issue.This paper describes the following three types of closed-loop level crossing control systems:decentralized level crossing control system,fully-centralized comprehensive level crossing control system and fully-centralized individual level crossing control system.This paper then assesses the safety of these systems in comparison to the conventional level crossing control system.For the purpose of the assessment of their safety,a new accident analysis model called STAMP(systems theoretic accident model and processes)that is suitable for software intensive systems is used to clarify the advantage of the proposed three types of level crossing control systems in terms of safety.
基金Supported by the National Natural Science Foundation of China (61101129)Specialized Research Fund for the Doctoral Program of Higher Education(20091101110019)
文摘To enhance the fidelity and accuracy of the simulation of communication networks,hardware-in-the-loop(HITL) simulation was employed.HITL simulation methods was classified into three categories,of which the merits and shortages were compared.Combing system-in-the-loop(SITL) simulation principle with high level architecture(HLA),an HITL simulation model of asynchronous transfer mode(ATM) network was constructed.The throughput and end-to-end delay of all-digital simulation and HITL simulation was analyzed,which showed that HITL simulation was more reliable and effectively improved the simulation credibility of communication network.Meanwhile,HLA-SITL method was fast and easy to achieve and low-cost during design lifecycle.Thus,it was a feasible way to research and analyze the large-scale network.
文摘Floating car-and loop detector-based methods are two different types of methods frequently used to collect travel time delay information across a freeway network.Sometimes,it is necessary to use them jointly to achieve the necessary freeway network coverage,due to the high labor costs for the floating car-based method and the indispensability of sufficient network instrumentation for the loop detector-based method.For example,both floating car-and loop detector-based methods were once used in the Highway Congestion Monitoring Program in the California Department of Transportation.It is therefore necessary to evaluate whether these two types of methods estimate similarly in terms of total travel time delay.To this end,corresponding delay information estimated using both types of methods from 37 freeway segments in the Greater Sacramento Area were collected and compared.It was found that these two types of methods do not estimate similarly in terms of total segment travel time delay.The mean absolute relative difference(MARD)can be as high as 78%,especially when delay is defined using a lower reference speed,such as 56 km/h.However,in terms of total segment travel time,the loop detector and the modified floating car method estimated similarly.The MARD is 19%.It was also found that the estimation from the different methods did correlate fairly well,which provides a means of conversion when different methods are used to monitor the total delay across a freeway network.As a spin-off,it was also found that a 1.5 km spacing of loop detectors is sufficient to achieve the 19%MARD as compared with the modified floating car method in terms of total travel time estimation.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.51190091)the National Natural Science Foundation of China(Grant No.51009045)the Open Research Fund Program of the State Key Laboratory of Water Resources and Hydropower Engineering Science of Wuhan University(Grant No.2012B094)
文摘Complex water movement and insufficient observation stations are the unfavorable factors in improving the accuracy of flow calculation of river networks. A water level updating model for river networks was set up based on a three-step method at key nodes, and model correction values were collected from gauge stations. To improve the accuracy of water level and discharge forecasts for the entire network, the discrete coefficients of the Saint-Venant equations for river sections were regarded as the media carrying the correction values from observation locations to other cross-sections of the river network system. To examine the applicability, the updating model was applied to flow calculation of an ideal river network and the Chengtong section of the Yangtze River. Comparison of the forecast results with the observed data demonstrates that this updating model can improve the forecast accuracy in both ideal and real river networks.
文摘This paper offers a new method to solve the problem of software pipelininsr on nested loops. We first introduce our new software pipelininog method. Ruminate Method, which can optimize program with nested loops. We also outline an algorithm to realize it and introduce the hardware support we designed. The performance of Ruminate Method is analyzed at the end of this paper with the aid of our preliminary experimental result.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA010301)the Research Foundation of Zhongxing Telecom Equipment Corporation and the National Natural Science Foundation of China(No.60976029)
文摘Phase locked loop(PLL) is a typical analog-digital mixed signal circuit and a method of conducting a top level system verification including PLL with standard digital simulator becomes especially significant.The behavioral level model(BLM) of the PLL in Verilog-HDL for pure digital simulator is innovated in this paper,and the design of PLL based clock and data recovery(CDR)circuit aided with jitter attenuation PLL for SerDes application is also presented.The CDR employs a dual-loop architecture where a frequency-locked loop acts as an acquisition aid to the phase-locked loop.To simultaneously meet jitter tolerance and jitter transfer specifications defined in G.8251 of optical transport network(ITU-T OTN),an additional jitter attenuation PLL is used.Simulation results show that the peak-to-peak jitter of the recovered clock and data is 5.17 ps and 2.3ps respectively.The core of the whole chip consumes 72 mA current from a 1.0V supply.
文摘Due to its inherent safety feature, the modular high temperature gas-cooled reactor (MHTGR) has been seen as one of the best candidates in building next generation nuclear plants (NGNPs). Since the MHTGR dynamics has high nonlinearity, it is necessary to develop nonlinear power-level controller which is not only beneficial to the safe, stable, efficient and autonomous operation of the MHTGR but also easy to be implemented practically. In this paper, based on the concept of shiftedectropy and the physically-based control design approach, it is proved theoretically that the simple proportional-differential (PD) output-feedback power-level control can provide globally asymptotic closed-loop stability. Numerical simulation results verify the theoretical results and show the influence of the controller parameters to the dynamic response.