With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying micr...With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.展开更多
Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid s...Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.展开更多
In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.I...In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.展开更多
A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hin...A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hinges with di erent configurations have been successively proposed, they are often designed based on designers' experiences and inspirations. This study presents a systematic method for topological optimization of flexure hinges by using the level set method. Optimization formulations are developed by considering the functional requirements and geometrical constraints of flexure hinges. The functional requirements are first constructed by maximizing the compliance in the desired direction while minimizing the compliances in the other directions. The weighting sum method is used to construct an objective function in which a self-adjust method is used to set the weighting factors. A constraint on the symmetry of the obtained configuration is developed. Several numerical examples are presented to demonstrate the validity of the proposed method. The obtained results reveal that the design of a flexure hinge starting from the topology level can yield more choices for compliant mechanism design and obtain better designs that achieve higher performance.展开更多
This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse ...This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse education researchers, selected using convenience sampling, with five or more years of nursing experience and experience teaching novice nurses, were invited to an expert meeting in July 2015. A group interview was conducted that lasted approximately 120 minutes. Study 2 examined the content validity index. Between September and November 2015, we distributed a self-administered questionnaire survey to 11 participants selected by convenience sampling. The participants included five nurse education researchers with a minimum of five years of nursing experience and experience teaching novice nurses, as well as six clinical nurses with a master’s degree or higher. Finally, 81 questionnaire items were retained from the initial 125 items. The 81-item Mentoring Function Scale for Novice Nurses had higher content validity than the original scale. To further increase the scale’s applicability, future studies should assess its reliability, construct validity, and criterion-related validity.展开更多
An improved level set approach for computing the incompressibletwo-phase flow with significantly de- formed free interface ispresented. The control volume formulation with the semi-implicitmethod for pressure-linked e...An improved level set approach for computing the incompressibletwo-phase flow with significantly de- formed free interface ispresented. The control volume formulation with the semi-implicitmethod for pressure-linked equations consistent (SIMPLEC) algorithmincorporated is used to solve the governing equations on a staggeredgrid. Several improvements concerning the computational grid,interface update, reinitialization procedure etc. are tested Andfound to be effective in promoting the convergence and numericalstability.展开更多
A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic s...A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.展开更多
Background: Dietary energy source and level in lactation diets can profoundly affect milk yield and composition.Such dietary effects on lactation performance are underpinned by alteration of the rumen microbiota, of w...Background: Dietary energy source and level in lactation diets can profoundly affect milk yield and composition.Such dietary effects on lactation performance are underpinned by alteration of the rumen microbiota, of which bacteria, archaea, fungi, and protozoa may vary differently. However, few studies have examined all the four groups of rumen microbes. This study investigated the effect of both the level and source of dietary energy on rumen bacteria, archaea, fungi, and protozoa in the rumen of lactating dairy cows. A 2 × 2 factorial design resulted in four dietary treatments: low and high dietary energy levels(LE: 1.52–1.53;and HE: 1.71–1.72 Mcal/kg dry matter) and two dietary energy sources(GC: finely ground corn;and SFC: steam-flaked corn). We used a replicated 4 × 4 Latin square design using eight primiparous Chinese Holstein cows with each period lasting for 21 d. The rumen microbiota was analyzed using metataxonomics based on kingdom-specific phylogenetic markers [16 S r RNA gene for bacteria and archaea, 18 S r RNA gene for protozoa, and internally transcribed spacer 1(ITS1) for fungi] followed with subsequent functional prediction using PICRUSt2.Results: The GC resulted in a higher prokaryotic(bacterial and archaeal) species richness and Faith's phylogenetic diversity than SFC. For the eukaryotic(fungi and protozoa) microbiota, the LE diets led to significantly higher values of the above measurements than the HE diets. Among the major classified taxa, 23 genera across all the kingdoms differed in relative abundance between the two dietary energy levels, while only six genera(none being protozoal)were differentially abundant between the two energy sources. Based on prokaryotic amplicon sequence variants(ASVs) from all the samples, overall functional profiles predicted using PICRUSt2 differed significantly between LE and HE but not between the two energy sources. Fish Taco analysis identified Ruminococcus and Coprococcus as the taxa potentially contributing to the enriched KEGG pathways for biosynthesis of amino acids and to the metabolisms of pyruvate, glycerophospholipid, and nicotinate and nicotinamide in the rumen of HE-fed cows. The co-occurrence networks were also affected by the dietary treatments, especially the LE and GC diets, resulting in distinct co-occurrence networks. Several microbial genera appeared to be strongly correlated with one or more lactation traits.Conclusions: Dietary energy level affected the overall rumen multi-kingdom microbiota while little difference was noted between ground corn and steam-flaked corn. Some genera were also affected differently by the four dietary treatments, including genera that had been shown to be correlated with lactation performance or feed efficiency.The co-occurrence patterns among the genera exclusively found for each dietary treatment may suggest possible metabolic interactions specifically affected by the dietary treatment. Some of the major taxa were positively correlated to milk properties and may potentially serve as biomarkers of one or more lactation traits.展开更多
The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airline...The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airlines would like to predict the maintenance level of aero-engine before repairing in terms of performance parameters,which can provide more economic benefits.The maintenance level decision rules are mined using the historical maintenance data of a civil aero-engine based on the rough set theory,and a variety of possible models of updating rules produced by newly increased maintenance cases added to the historical maintenance case database are investigated by the means of incremental machine learning.The continuously updated rules can provide reasonable guidance suggestions for engineers and decision support for planning a maintenance budget program before repairing. The results of an example show that the decision rules become more typical and robust,and they are more accurate to predict the maintenance level of an aero-engine module as the maintenance data increase,which illustrates the feasibility of the represented method.展开更多
In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is on...The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is one of the important aspects in the arterial graft design problem since it affects the flow of the blood significantly. As an attractive design tool for this problem, level set methods are quite efficient for obtaining better shape of the graft. In this paper, a cubic spline level set method and a radial basis function level set method are designed to solve the arterial graft design problem. In both approaches, the shape of the arterial graft is implicitly tracked by the zero-level contour of a level set function and a high level of smoothness of the graft is achieved. Numerical results show the efficiency of the algorithms in the arterial graft design.展开更多
In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.
The Lebesgue-Nikodym Theorem states that for a Lebesgue measure an additive set function ?which is -absolutely continuous is the integral of a Lebegsue integrable a measurable function;that is, for all measurable sets...The Lebesgue-Nikodym Theorem states that for a Lebesgue measure an additive set function ?which is -absolutely continuous is the integral of a Lebegsue integrable a measurable function;that is, for all measurable sets.?Such a property is not shared by vector valued set functions. We introduce a suitable definition of the integral that will extend the above property to the vector valued case in its full generality. We also discuss a further extension of the Fundamental Theorem of Calculus for additive set functions with values in an infinite dimensional normed space.展开更多
2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization...2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization approach is employed to obtain the effective thermoelastic properties of the multiphase metamaterials.Theε-constraint multi-objective optimization method is adopted in the formulation.The coefficient of thermal expansion(CTE)and Poisson’s ratio(PR)are chosen as two objective functions,with the CTE optimized and the PR treated as a constraint.The optimization problems are solved by using the method of moving asymptotes.Effective isotropic and anisotropic CTEs and stiffness constants are obtained for the topologically optimized metamaterials with prescribed values of PR under the constraints of specified effective bulk modulus,volume fractions and material symmetry.Two solid materials along with one additional void phase are involved in each of the 2-D and 3-D optimal design examples.The numerical results reveal that the newly proposed approach can integrate shape and topology optimizations and lead to optimal microstructures with distinct topological boundaries.The current method can topologically optimize metamaterials with a positive,negative or zero CTE and a positive,negative or zero Poisson’s ratio.展开更多
The arrival of big data era has brought new opportunities and challenges to the development of various industries in China.The explosive growth of commercial bank data has brought great pressure on internal audit.The ...The arrival of big data era has brought new opportunities and challenges to the development of various industries in China.The explosive growth of commercial bank data has brought great pressure on internal audit.The key audit of key products limited to key business areas can no longer meet the needs.It is difficult to find abnormal and exceptional risks only by sampling analysis and static analysis.Exploring the organic integration and business processing methods between big data and bank internal audit,Internal audit work can protect the stable and sustainable development of banks under the new situation.Therefore,based on fuzzy set theory,this paper determines the membership degree of audit data through membership function,and judges the risk level of audit data,and builds a risk level evaluation system.The main features of this paper are as follows.First,it analyzes the necessity of transformation of the bank auditing in the big data environment.The second is to combine the determination of the membership function in the fuzzy set theory with the bank audit analysis,and use the model to calculate the corresponding parameters,thus establishing a risk level assessment system.The third is to propose audit risk assessment recommendations,hoping to help bank audit risk management in the big data environment.There are some shortcomings in this paper.First,the amount of data acquired is not large enough.Second,due to the lack of author’knowledge,there are still some deficiencies in the analysis of audit risk of commercial banks.展开更多
When all the involved data in indefinite quadratic programs change simultaneously, we show the locally Lipschtiz continuity of the KKT set of the quadratic programming problem firstly, then we establish the locally Li...When all the involved data in indefinite quadratic programs change simultaneously, we show the locally Lipschtiz continuity of the KKT set of the quadratic programming problem firstly, then we establish the locally Lipschtiz continuity of the KKT solution set. Finally, the similar conclusion for the corresponding optimal value function is obtained.展开更多
This paper calculates the equilibrium structure and the potential energy functions of the ground state (X^2∑^+) and the low lying excited electronic state (A^2Л) of CN radical are calculated by using CASSCF met...This paper calculates the equilibrium structure and the potential energy functions of the ground state (X^2∑^+) and the low lying excited electronic state (A^2Л) of CN radical are calculated by using CASSCF method. The potential energy curves are obtained by a least square fitting to the modified Murrell-Sorbie function. On the basis of physical theory of potential energy function, harmonic frequency (ωe) and other spectroscopic constants (ωeχe, βe and αe) are calculated by employing the Rydberg-Klei-Rees method. The theoretical calculation results are in excellent agreement with the experimental and other complicated theoretical calculation data. In addition, the eigenvalues of vibrational levels have been calculated by solving the radial one-dimensional SchrSdinger equation of nuclear motion using the algebraic method based on the analytical potential energy function.展开更多
A novel flotation froth image segmentation based on threshold level set method is put forward in view of the problem of over-segmentation and under-segmentation which occurs when the existing method segmented the flot...A novel flotation froth image segmentation based on threshold level set method is put forward in view of the problem of over-segmentation and under-segmentation which occurs when the existing method segmented the flotation froth images. Firstly, the proposed method adopts histogram equalization to improve the contrast of the image, and then chooses the upper threshold and lower threshold from grey value of histogram of the image equalization, and complete image segmentation using the level set method. In this paper, the model which integrates edge with region level set model is utilized, and the speed energy term is introduced to segment the target. Experimental results show that the proposed method has better segmentation results and higher segmentation efficiency on the images with under-segmentation and incorrect segmentation, and it is meaningful for ore dressing industrial.展开更多
基金the National Key Research and Development Program of China(Grant Number 2021YFB1714600)the National Natural Science Foundation of China(Grant Number 52075195)the Fundamental Research Funds for the Central Universities,China through Program No.2172019kfyXJJS078.
文摘With the continuous advancement in topology optimization and additive manufacturing(AM)technology,the capability to fabricate functionally graded materials and intricate cellular structures with spatially varying microstructures has grown significantly.However,a critical challenge is encountered in the design of these structures–the absence of robust interface connections between adjacent microstructures,potentially resulting in diminished efficiency or macroscopic failure.A Hybrid Level Set Method(HLSM)is proposed,specifically designed to enhance connectivity among non-uniform microstructures,contributing to the design of functionally graded cellular structures.The HLSM introduces a pioneering algorithm for effectively blending heterogeneous microstructure interfaces.Initially,an interpolation algorithm is presented to construct transition microstructures seamlessly connected on both sides.Subsequently,the algorithm enables the morphing of non-uniform unit cells to seamlessly adapt to interconnected adjacent microstructures.The method,seamlessly integrated into a multi-scale topology optimization framework using the level set method,exhibits its efficacy through numerical examples,showcasing its prowess in optimizing 2D and 3D functionally graded materials(FGM)and multi-scale topology optimization.In essence,the pressing issue of interface connections in complex structure design is not only addressed but also a robust methodology is introduced,substantiated by numerical evidence,advancing optimization capabilities in the realm of functionally graded materials and cellular structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.51975227 and 12272144).
文摘Stiffened structures have great potential for improvingmechanical performance,and the study of their stability is of great interest.In this paper,the optimization of the critical buckling load factor for curved grid stiffeners is solved by using the level set based density method,where the shape and cross section(including thickness and width)of the stiffeners can be optimized simultaneously.The grid stiffeners are a combination ofmany single stiffenerswhich are projected by the corresponding level set functions.The thickness and width of each stiffener are designed to be independent variables in the projection applied to each level set function.Besides,the path of each single stiffener is described by the zero iso-contour of the level set function.All the single stiffeners are combined together by using the p-norm method to obtain the stiffener grid.The proposed method is validated by several numerical examples to optimize the critical buckling load factor.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0211303)the National Natural Science Foundation of China(Grant No.91850207)the numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.
文摘In real space density functional theory calculations,the effective potential depends on the electron density,requiring self-consistent iterations,and numerous integrals at each step,making the process time-consuming.In our research,we propose an optimization method to expedite density functional theory(DFT)calculations for systems with large aspect ratios,such as metallic nanorods,nanowires,or scanning tunneling microscope tips.This method focuses on employing basis set to expand the electron density,Coulomb potential,and exchange-correlation potential.By precomputing integrals and caching redundant results,this expansion streamlines the integration process,significantly accelerating DFT computations.As a case study,we have applied this optimization to metallic nanorod systems of various radii and lengths,obtaining corresponding ground-state electron densities and potentials.
基金Supported by National Natural Science Foundation of China(Grant Nos.51605166,51820105007)Fundamental Research Funds for the Central Universities of China
文摘A flexure hinge is a major component in designing compliant mechanisms that o ers unique possibilities in a wide range of application fields in which high positioning accuracy is required. Although various flexure hinges with di erent configurations have been successively proposed, they are often designed based on designers' experiences and inspirations. This study presents a systematic method for topological optimization of flexure hinges by using the level set method. Optimization formulations are developed by considering the functional requirements and geometrical constraints of flexure hinges. The functional requirements are first constructed by maximizing the compliance in the desired direction while minimizing the compliances in the other directions. The weighting sum method is used to construct an objective function in which a self-adjust method is used to set the weighting factors. A constraint on the symmetry of the obtained configuration is developed. Several numerical examples are presented to demonstrate the validity of the proposed method. The obtained results reveal that the design of a flexure hinge starting from the topology level can yield more choices for compliant mechanism design and obtain better designs that achieve higher performance.
文摘This study aimed to examine the surface and content validity of the Mentoring Function Scale for Novice Nurses, used to assess the mentoring of entry-level nurses, and to refine the scale items. In Study 1, six nurse education researchers, selected using convenience sampling, with five or more years of nursing experience and experience teaching novice nurses, were invited to an expert meeting in July 2015. A group interview was conducted that lasted approximately 120 minutes. Study 2 examined the content validity index. Between September and November 2015, we distributed a self-administered questionnaire survey to 11 participants selected by convenience sampling. The participants included five nurse education researchers with a minimum of five years of nursing experience and experience teaching novice nurses, as well as six clinical nurses with a master’s degree or higher. Finally, 81 questionnaire items were retained from the initial 125 items. The 81-item Mentoring Function Scale for Novice Nurses had higher content validity than the original scale. To further increase the scale’s applicability, future studies should assess its reliability, construct validity, and criterion-related validity.
基金Supported by the National Natural Science Foundation of China (No. 29836130).
文摘An improved level set approach for computing the incompressibletwo-phase flow with significantly de- formed free interface ispresented. The control volume formulation with the semi-implicitmethod for pressure-linked equations consistent (SIMPLEC) algorithmincorporated is used to solve the governing equations on a staggeredgrid. Several improvements concerning the computational grid,interface update, reinitialization procedure etc. are tested Andfound to be effective in promoting the convergence and numericalstability.
基金Supported by the National Natural Science Foundation of China(10871159) the National Basic Research Program of China(2005CB321704)
文摘A non-isothermal injection molding process for a non-Newtonian viscous pseudoplastic fluid is simulated.A conservative interface capturing technique and the flow field solving method are coupled to perform a dynamic simulation.The validity of the numerical method is verified by a benchmark problem.The melt interface evolution versus time is captured and the physical quantities such as temperature,velocity and pressure at each time step are obtained with corresponding analysis.A"frozen skin"layer with the thickness increasing versus time during the injection process is found.The fact that the"frozen skin"layer can be reduced by increasing the injection velocity is numerically verified.The fountain flow phenomenon near the melt interface is also captured.Moreover,comparisons with the non-isothermal Newtonian case show that the curvatures of the interface arcs and the pressure contours near the horizontal mid-line of the cavity for the non-Newtonian pseudoplastic case is larger than that for the Newtonian case.The velocity profiles are different at different positions for the non-Newtonian pseudoplastic case,while in the case of Newtonian flow the velocity profiles are parabolic and almost the same at different positions.
基金partially funded by grants from the National Key Research and Development Program of China (2018YFD0501600)the Scientific Research Project for Major Achievements of The Agricultural Science and Technology Innovation Program (ASTIP)(No. CAAS-ZDXT2019004+3 种基金CAASXTCX2016011–01ASTIP-IAS07)Beijing Dairy Industry Innovation Team(BAIC06–2019)the USDA National Institute of Food and Agriculture(award number:2019–67030-29003)。
文摘Background: Dietary energy source and level in lactation diets can profoundly affect milk yield and composition.Such dietary effects on lactation performance are underpinned by alteration of the rumen microbiota, of which bacteria, archaea, fungi, and protozoa may vary differently. However, few studies have examined all the four groups of rumen microbes. This study investigated the effect of both the level and source of dietary energy on rumen bacteria, archaea, fungi, and protozoa in the rumen of lactating dairy cows. A 2 × 2 factorial design resulted in four dietary treatments: low and high dietary energy levels(LE: 1.52–1.53;and HE: 1.71–1.72 Mcal/kg dry matter) and two dietary energy sources(GC: finely ground corn;and SFC: steam-flaked corn). We used a replicated 4 × 4 Latin square design using eight primiparous Chinese Holstein cows with each period lasting for 21 d. The rumen microbiota was analyzed using metataxonomics based on kingdom-specific phylogenetic markers [16 S r RNA gene for bacteria and archaea, 18 S r RNA gene for protozoa, and internally transcribed spacer 1(ITS1) for fungi] followed with subsequent functional prediction using PICRUSt2.Results: The GC resulted in a higher prokaryotic(bacterial and archaeal) species richness and Faith's phylogenetic diversity than SFC. For the eukaryotic(fungi and protozoa) microbiota, the LE diets led to significantly higher values of the above measurements than the HE diets. Among the major classified taxa, 23 genera across all the kingdoms differed in relative abundance between the two dietary energy levels, while only six genera(none being protozoal)were differentially abundant between the two energy sources. Based on prokaryotic amplicon sequence variants(ASVs) from all the samples, overall functional profiles predicted using PICRUSt2 differed significantly between LE and HE but not between the two energy sources. Fish Taco analysis identified Ruminococcus and Coprococcus as the taxa potentially contributing to the enriched KEGG pathways for biosynthesis of amino acids and to the metabolisms of pyruvate, glycerophospholipid, and nicotinate and nicotinamide in the rumen of HE-fed cows. The co-occurrence networks were also affected by the dietary treatments, especially the LE and GC diets, resulting in distinct co-occurrence networks. Several microbial genera appeared to be strongly correlated with one or more lactation traits.Conclusions: Dietary energy level affected the overall rumen multi-kingdom microbiota while little difference was noted between ground corn and steam-flaked corn. Some genera were also affected differently by the four dietary treatments, including genera that had been shown to be correlated with lactation performance or feed efficiency.The co-occurrence patterns among the genera exclusively found for each dietary treatment may suggest possible metabolic interactions specifically affected by the dietary treatment. Some of the major taxa were positively correlated to milk properties and may potentially serve as biomarkers of one or more lactation traits.
基金Supported by the National Natural Science Foundation of China(60939003)
文摘The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airlines would like to predict the maintenance level of aero-engine before repairing in terms of performance parameters,which can provide more economic benefits.The maintenance level decision rules are mined using the historical maintenance data of a civil aero-engine based on the rough set theory,and a variety of possible models of updating rules produced by newly increased maintenance cases added to the historical maintenance case database are investigated by the means of incremental machine learning.The continuously updated rules can provide reasonable guidance suggestions for engineers and decision support for planning a maintenance budget program before repairing. The results of an example show that the decision rules become more typical and robust,and they are more accurate to predict the maintenance level of an aero-engine module as the maintenance data increase,which illustrates the feasibility of the represented method.
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
基金Supported by National Foundation of Natural Science(11471092)Natural Science Foundation of Zhejiang Province(LZ13A010003)Foundation of Zhejiang Educational Committee(Y201121891)
文摘The goal of the arterial graft design problem is to find an optimal graft built on an occluded artery, which can be mathematically modeled by a fluid based shape optimization problem. The smoothness of the graft is one of the important aspects in the arterial graft design problem since it affects the flow of the blood significantly. As an attractive design tool for this problem, level set methods are quite efficient for obtaining better shape of the graft. In this paper, a cubic spline level set method and a radial basis function level set method are designed to solve the arterial graft design problem. In both approaches, the shape of the arterial graft is implicitly tracked by the zero-level contour of a level set function and a high level of smoothness of the graft is achieved. Numerical results show the efficiency of the algorithms in the arterial graft design.
文摘In this paper, the uniqueness of meromorphic functions with common range sets and deficient values are studied. This result is related to a question of Gross.
文摘The Lebesgue-Nikodym Theorem states that for a Lebesgue measure an additive set function ?which is -absolutely continuous is the integral of a Lebegsue integrable a measurable function;that is, for all measurable sets.?Such a property is not shared by vector valued set functions. We introduce a suitable definition of the integral that will extend the above property to the vector valued case in its full generality. We also discuss a further extension of the Fundamental Theorem of Calculus for additive set functions with values in an infinite dimensional normed space.
文摘2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization approach is employed to obtain the effective thermoelastic properties of the multiphase metamaterials.Theε-constraint multi-objective optimization method is adopted in the formulation.The coefficient of thermal expansion(CTE)and Poisson’s ratio(PR)are chosen as two objective functions,with the CTE optimized and the PR treated as a constraint.The optimization problems are solved by using the method of moving asymptotes.Effective isotropic and anisotropic CTEs and stiffness constants are obtained for the topologically optimized metamaterials with prescribed values of PR under the constraints of specified effective bulk modulus,volume fractions and material symmetry.Two solid materials along with one additional void phase are involved in each of the 2-D and 3-D optimal design examples.The numerical results reveal that the newly proposed approach can integrate shape and topology optimizations and lead to optimal microstructures with distinct topological boundaries.The current method can topologically optimize metamaterials with a positive,negative or zero CTE and a positive,negative or zero Poisson’s ratio.
基金This research work is implemented at the 2011 Collaborative Innovation Center for Development and Utilization of Finance and Economics Big Data Property,Universities of Hunan ProvinceHunan Provincial Key Laboratory of Big Data Science and Technology,Finance and Economics+3 种基金Key Laboratory of Information Technology and Security,Hunan Provincial Higher Education.This research is funded by the Open Foundation for the University Innovation Platform in the Hunan Province,grant number 18K103Open Project(Grant Nos.20181901CRP03,20181901CRP04,20181901CRP05)Hunan Provincial Education Science 13th Five-Year Plan(Grant No.XJK016BXX001)Social Science Foundation of Hunan Province(Grant No.17YBA049).
文摘The arrival of big data era has brought new opportunities and challenges to the development of various industries in China.The explosive growth of commercial bank data has brought great pressure on internal audit.The key audit of key products limited to key business areas can no longer meet the needs.It is difficult to find abnormal and exceptional risks only by sampling analysis and static analysis.Exploring the organic integration and business processing methods between big data and bank internal audit,Internal audit work can protect the stable and sustainable development of banks under the new situation.Therefore,based on fuzzy set theory,this paper determines the membership degree of audit data through membership function,and judges the risk level of audit data,and builds a risk level evaluation system.The main features of this paper are as follows.First,it analyzes the necessity of transformation of the bank auditing in the big data environment.The second is to combine the determination of the membership function in the fuzzy set theory with the bank audit analysis,and use the model to calculate the corresponding parameters,thus establishing a risk level assessment system.The third is to propose audit risk assessment recommendations,hoping to help bank audit risk management in the big data environment.There are some shortcomings in this paper.First,the amount of data acquired is not large enough.Second,due to the lack of author’knowledge,there are still some deficiencies in the analysis of audit risk of commercial banks.
基金Foundation ttem Project C. B. 10.00. GL. 03 at Idaho National LaboratoryAcknowledgements This work is supported by the laboratory directed research and development (LDRD) project C. B. 10.00. GL. 03 at Idaho National Laboratory (INL), which is operated by the Battelle Energy Alliance for the U. S. Department of Energy.
基金Supported by the National Natural Science Foundation of China(10571141,70971109,71371152)supported by the Talents Fund of Xi’an Polytechnic University(BS1320)the Mathematics Discipline Development Fund of Xi’an Ploytechnic University(107090701)
文摘When all the involved data in indefinite quadratic programs change simultaneously, we show the locally Lipschtiz continuity of the KKT set of the quadratic programming problem firstly, then we establish the locally Lipschtiz continuity of the KKT solution set. Finally, the similar conclusion for the corresponding optimal value function is obtained.
基金Project supported by the National Natural Science Foundation of China (Grant No 60771038).
文摘This paper calculates the equilibrium structure and the potential energy functions of the ground state (X^2∑^+) and the low lying excited electronic state (A^2Л) of CN radical are calculated by using CASSCF method. The potential energy curves are obtained by a least square fitting to the modified Murrell-Sorbie function. On the basis of physical theory of potential energy function, harmonic frequency (ωe) and other spectroscopic constants (ωeχe, βe and αe) are calculated by employing the Rydberg-Klei-Rees method. The theoretical calculation results are in excellent agreement with the experimental and other complicated theoretical calculation data. In addition, the eigenvalues of vibrational levels have been calculated by solving the radial one-dimensional SchrSdinger equation of nuclear motion using the algebraic method based on the analytical potential energy function.
文摘A novel flotation froth image segmentation based on threshold level set method is put forward in view of the problem of over-segmentation and under-segmentation which occurs when the existing method segmented the flotation froth images. Firstly, the proposed method adopts histogram equalization to improve the contrast of the image, and then chooses the upper threshold and lower threshold from grey value of histogram of the image equalization, and complete image segmentation using the level set method. In this paper, the model which integrates edge with region level set model is utilized, and the speed energy term is introduced to segment the target. Experimental results show that the proposed method has better segmentation results and higher segmentation efficiency on the images with under-segmentation and incorrect segmentation, and it is meaningful for ore dressing industrial.