期刊文献+
共找到659篇文章
< 1 2 33 >
每页显示 20 50 100
Numerical Investigations on the Resonance Errors of Multiscale Discontinuous Galerkin Methods for One-Dimensional Stationary Schrödinger Equation
1
作者 Bo Dong Wei Wang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期311-324,共14页
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al... In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers. 展开更多
关键词 discontinuous galerkin(DG)method Multiscale method Resonance errors One-dimensional Schrödinger equation
下载PDF
A Provable Positivity-Preserving Local Discontinuous Galerkin Method for the Viscous and Resistive MHD Equations
2
作者 Mengjiao Jiao Yan Jiang Mengping Zhang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期279-310,共32页
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver... In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes. 展开更多
关键词 Viscous and resistive MHD equations Positivity-preserving discontinuous galerkin(DG)method High order accuracy
下载PDF
A Local Macroscopic Conservative(LoMaC)Low Rank Tensor Method with the Discontinuous Galerkin Method for the Vlasov Dynamics
3
作者 Wei Guo Jannatul Ferdous Ema Jing-Mei Qiu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期550-575,共26页
In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.... In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method. 展开更多
关键词 Hierarchical Tucker(HT)decomposition Conservative SVD Energy conservation discontinuous galerkin(DG)method
下载PDF
Local Discontinuous Galerkin Methods for the abcd Nonlinear Boussinesq System 被引量:1
4
作者 Jiawei Sun Shusen Xie Yulong Xing 《Communications on Applied Mathematics and Computation》 2022年第2期381-416,共36页
Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models s... Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system,the BBM-BBM system,the Bona-Smith system,etc.We propose local discontinuous Galerkin(LDG)methods,with carefully chosen numerical fluxes,to numerically solve this abcd Boussinesq system.The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a,b,c,d.Numerical experiments are shown to test the convergence rates,and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well. 展开更多
关键词 local discontinuous galerkin methods Boussinesq equations Coupled BBM equations Error estimate Numerical fluxes Head-on collision
下载PDF
High-Order Decoupled and Bound Preserving Local Discontinuous Galerkin Methods for a Class of Chemotaxis Models
5
作者 Wei Zheng Yan Xu 《Communications on Applied Mathematics and Computation》 EI 2024年第1期372-398,共27页
In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe... In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving. 展开更多
关键词 Chemotaxis models local discontinuous galerkin(LDG)scheme Convex splitting method Variant energy quadratization method Scalar auxiliary variable method Spectral deferred correction method
下载PDF
Modified Burgers' equation by the local discontinuous Galerkin method 被引量:3
6
作者 张荣培 蔚喜军 赵国忠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第3期106-110,共5页
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco... In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient. 展开更多
关键词 local discontinuous galerkin method modified Burgers' equation
下载PDF
New Immersed Boundary Method on the Adaptive Cartesian Grid Applied to the Local Discontinuous Galerkin Method 被引量:1
7
作者 Xu-Jiu Zhang Yong-Sheng Zhu +1 位作者 Ke Yan You-Yun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期176-185,共10页
Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ... Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research. 展开更多
关键词 Immersed boundary method Adaptive Cartesian grid local discontinuous galerkin method RECONSTRUCTION Heat transfer equation
下载PDF
The Direct Discontinuous Galerkin Methods with Implicit-Explicit Runge-Kutta Time Marching for Linear Convection-Diffusion Problems 被引量:1
8
作者 Haijin Wang Qiang Zhang 《Communications on Applied Mathematics and Computation》 2022年第1期271-292,共22页
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve... In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes. 展开更多
关键词 Direct discontinuous galerkin method Implicit-explicit scheme Stability analysis Energy method Convection-diffusion problem
下载PDF
The Error Estimates of Direct Discontinuous Galerkin Methods Based on Upwind-Baised Fluxes 被引量:1
9
作者 Hui Bi Yixin Chen 《Journal of Applied Mathematics and Physics》 2020年第12期2964-2970,共7页
<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the... <div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div> 展开更多
关键词 Direct discontinuous galerkin methods Global Projection Error Estimates the Upwind-Biased Fluxes
下载PDF
Local Discontinuous Galerkin Method for the Time-Fractional KdV Equation with the Caputo-Fabrizio Fractional Derivative 被引量:1
10
作者 Huanhuan Wang Xiaoyan Xu +2 位作者 Junmei Dou Ting Zhang Leilei Wei 《Journal of Applied Mathematics and Physics》 2022年第6期1918-1935,共18页
This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discon... This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments. 展开更多
关键词 Caputo-Fabrizio Fractional Derivative local discontinuous galerkin Method STABILITY Error Analysis
下载PDF
Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second‑Order Elliptic Problems on Cartesian Grids
11
作者 Mahboub Baccouch 《Communications on Applied Mathematics and Computation》 2022年第2期437-476,共40页
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesia... This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results. 展开更多
关键词 Semilinear second-order elliptic boundary-value problems local discontinuous galerkin method A priori error estimation Optimal superconvergence SUPERCLOSENESS Gauss-Radau projections
下载PDF
Hermite-Discontinuous Galerkin Overset Grid Methods for the Scalar Wave Equation
12
作者 Oleksii Beznosov Daniel Appel 《Communications on Applied Mathematics and Computation》 2021年第3期391-418,共28页
We present high order accurate numerical methods for the wave equation that combines efficient Hermite methods with geometrically flexible discontinuous Galerkin methods by using overset grids.Near boundaries we use t... We present high order accurate numerical methods for the wave equation that combines efficient Hermite methods with geometrically flexible discontinuous Galerkin methods by using overset grids.Near boundaries we use thin boundary fitted curvilinear grids and in the volume we use Cartesian grids so that the computational complexity of the solvers approaches a structured Cartesian Hermite method.Unlike many other overset methods we do not need to add artificial dissipation but we find that the built-in dissipation of the Hermite and discontinuous Galerkin methods is sufficient to maintain the stability.By numerical experiments we demonstrate the stability,accuracy,efficiency,and the applicability of the methods to forward and inverse problems. 展开更多
关键词 Wave equation Overset grids High order Hermite methods discontinuous galerkin methods
下载PDF
Velocity Projection with Upwind Scheme Based on the Discontinuous Galerkin Methods for the Two Phase Flow Problem
13
作者 Jiangyong Hou Wenjing Yan Jie Chen 《International Journal of Modern Nonlinear Theory and Application》 2015年第2期127-141,共15页
The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase... The upwind scheme is very important in the numerical approximation of some problems such as the convection dominated problem, the two-phase flow problem, and so on. For the fractional flow formulation of the two-phase flow problem, the Penalty Discontinuous Galerkin (PDG) methods combined with the upwind scheme are usually used to solve the phase pressure equation. In this case, unless the upwind scheme is taken into consideration in the velocity reconstruction, the local mass balance cannot hold exactly. In this paper, we present a scheme of velocity reconstruction in some H(div) spaces with considering the upwind scheme totally. Furthermore, the different ways to calculate the nonlinear coefficients may have distinct and significant effects, which have been investigated by some authors. We propose a new algorithm to obtain a more effective and stable approximation of the coefficients under the consideration of the upwind scheme. 展开更多
关键词 VELOCITY PROJECTION UPWIND Scheme PENALTY discontinuous galerkin methods Two Phase Flow in Porous Media
下载PDF
Bound-Preserving Discontinuous Galerkin Methods with Modified Patankar Time Integrations for Chemical Reacting Flows
14
作者 Fangyao Zhu Juntao Huang Yang Yang 《Communications on Applied Mathematics and Computation》 EI 2024年第1期190-217,共28页
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e... In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes. 展开更多
关键词 Compressible Euler equations Chemical reacting flows Bound-preserving discontinuous galerkin(DG)method Modified Patankar method
下载PDF
Superconvergence of Direct Discontinuous Galerkin Methods:Eigen-structure Analysis Based on Fourier Approach
15
作者 Xuechun Liu Haijin Wang +1 位作者 Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 EI 2024年第1期257-278,共22页
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq... This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results. 展开更多
关键词 Direct discontinuous galerkin(DDG)method with interface correction Symmetric DDG method SUPERCONVERGENCE Fourier analysis Eigen-structure
下载PDF
Stability and Time-Step Constraints of Implicit-Explicit Runge-Kutta Methods for the Linearized Korteweg-de Vries Equation
16
作者 Joseph Hunter Zheng Sun Yulong Xing 《Communications on Applied Mathematics and Computation》 EI 2024年第1期658-687,共30页
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either... This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints. 展开更多
关键词 Linearized Korteweg-de Vries(KdV)equation Implicit-explicit(IMEX)Runge-Kutta(RK)method STABILITY Courant-Friedrichs-Lewy(CFL)condition Finite difference(FD)method local discontinuous galerkin(DG)method
下载PDF
Direct discontinuous Galerkin method for the generalized Burgers-Fisher equation 被引量:3
17
作者 张荣培 张立伟 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期72-75,共4页
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cell... In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method. 展开更多
关键词 direct discontinuous galerkin method Burgers Fisher equation strong stability pre-serving Runge-Kutta method
下载PDF
Superconvergence Study of the Direct Discontinuous Galerkin Method and Its Variations for Diffusion Equations 被引量:2
18
作者 Yuqing Miao Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 2022年第1期180-204,共25页
In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with ... In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with the interface correction(DDGIC)(Liu and Yan in Commun Comput Phys 8(3):541-564,2010),the symmetric DDG method(Vidden and Yan in Comput Math 31(6):638-662,2013),and the nonsymmetric DDG method(Yan in J Sci Comput 54(2):663-683,2013).We also include the study of the interior penalty DG(IPDG)method,due to its close relation to DDG methods.Error estimates are carried out for both P2 and P3 polynomial approximations.By investigating the quantitative errors at the Lobatto points,we show that the DDGIC and symmetric DDG methods are superior,in the sense of obtaining(k+2)th superconvergence orders for both P2 and P3 approximations.Superconvergence order of(k+2)is also observed for the IPDG method with P3 polynomial approximations.The errors are sensitive to the choice of the numerical flux coefficient for even degree P2 approximations,but are not for odd degree P3 approxi-mations.Numerical experiments are carried out at the same time and the numerical errors match well with the analytically estimated errors. 展开更多
关键词 Direct discontinuous galerkin methods SUPERCONVERGENCE Fourier analysis Diffusion equation
下载PDF
Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations 被引量:1
19
作者 Jie Du Eric Chung Yang Yang 《Communications on Applied Mathematics and Computation》 2022年第1期353-379,共27页
In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materi... In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme. 展开更多
关键词 Maximum-principle-preserving local discontinuous galerkin methods Allen-Cahn equation Conservative exponential integrations
下载PDF
Superconvergence Analysis of the Runge-Kutta Discontinuous Galerkin Method with Upwind-Biased Numerical Flux for Two-Dimensional Linear Hyperbolic Equation 被引量:1
20
作者 Yuan Xu Qiang Zhang 《Communications on Applied Mathematics and Computation》 2022年第1期319-352,共34页
In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flu... In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flux is used.By suitably defining the correction function and deeply understanding the mechanisms when the spatial derivatives and the correction manipulations are carried out along the same or different directions,we obtain the superconvergence results on the node averages,the numerical fluxes,the cell averages,the solution and the spatial derivatives.The superconvergence properties in space are pre-served as the semi-discrete method,and time discretization solely produces an optimal order error in time.Some numerical experiments also are given. 展开更多
关键词 Runge-Kutta discontinuous galerkin method Upwind-biased flux Superconvergence analysis Hyperbolic equation Two dimensions
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部