By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and ...By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th...To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.展开更多
Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized...Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fuids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.展开更多
In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong...In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.展开更多
Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of sh...Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of short-time non-stationary random signals, the wavelet packet energy spectrum analysis for blast vibration signal has made by wavelet packet analysis technology and the signals were measured under different explosion parameters (the maximal section dose, the distance of blast source to measuring point and the section number of millisecond detonator). The results show that more than 95% frequency band energy of the signals sl-s8 concentrates at 0-200 Hz and the main vibration frequency bands of the signals sl-s8 are 70.313-125, 46.875-93.75, 15.625-93.75, 0-62.5, 42.969-125, 15.625-82.031, 7.813-62.5 and 0-62.5 Hz. Energy distributions for different frequency bands of blast vibration signal are obtained and the characteristics of energy distributions for blast vibration signal measured under different explosion parameters are analyzed. From blast vibration signal energy, the decreasing law of blast seismic waves measured under different explosion parameters was studied and the wavelet packet analysis is an effective means for studying seismic effect induced by blast.展开更多
Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expr...Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.展开更多
In this paper, a two-parameter Lindley distribution, of which the one parameter Lindley distribution (LD) is a particular case, for modeling waiting and survival times data has been introduced. Its moments, failure ra...In this paper, a two-parameter Lindley distribution, of which the one parameter Lindley distribution (LD) is a particular case, for modeling waiting and survival times data has been introduced. Its moments, failure rate function, mean residual life function, and stochastic orderings have been discussed. It is found that the expressions for failure rate function mean residual life function and stochastic orderings of the two-parameter LD shows flexibility over one-parameter LD and exponential distribution. The maximum likelihood method and the method of moments have been discussed for estimating its parameters. The distribution has been fitted to some data-sets relating to waiting times and survival times to test its goodness of fit to which earlier the one parameter LD has been fitted by others and it is found that to almost all these data-sets the two parameter LD distribution provides closer fits than those by the one parameter LD.展开更多
The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed paramete...The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.展开更多
In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem...In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem is constructed using the finite difference method. The discretization accuracy is second-order in time and fourth-order in space. We obtain the unique solvability and present an alternating direction implicit algorithm to solve this difference scheme. The results of numerical experiments are presented to demonstrate the accuracy of this algorithm.展开更多
In this paper, we devote to constructing the one-sided empirical Bayes(EB) test for the location parameter in the Gamma distribution by nonparametric method. Under some mild conditions, we prove that the EB test is as...In this paper, we devote to constructing the one-sided empirical Bayes(EB) test for the location parameter in the Gamma distribution by nonparametric method. Under some mild conditions, we prove that the EB test is asymptotically optimal with the rate of the order O(n^(-δs/(2s+1))), where 1/2 ≤ δ < 1 and s > 1 is a given natural number. An example is also given to illustrate that the conditions of the main theorems are easily satisfied.展开更多
The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model ...The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering.展开更多
This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Con...This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.展开更多
Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer su...Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system.展开更多
Stem diameter distribution information is useful in forest management planning. Weibull function is flexible, and has been used in characterising diameter distributions, especially in single-species planted stands, th...Stem diameter distribution information is useful in forest management planning. Weibull function is flexible, and has been used in characterising diameter distributions, especially in single-species planted stands, the world over. We evaluated some Weibull parameter estimation methods for stem diameter characterisation in (Oban) multi-species Forest in southern Nigeria. Four study sites (Aking, Ekang, Erokut and Ekuri) were selected. Four 2 km-long transects situated at 600 m apart were laid in each location. Five 50m x 50m plots were alternately laid along each transect at 400 m apart (20 plots/location) using systematic sampling technique. Tree growth variables: diameter at breast height (Dbh), diameters at the base, middle and merchantable limit, total height, merchantable height, stem straightness, crown length and crown diameter were measured on all trees 〉 10 cm to compute model response variables such as mean diameters, basal area and stem volume. Weibull parameters estimation methods used were: moment-based, percentile-based, hybrid and maximum-likelihood (ML). Data were analysed using descriptive statistics, regression models and ANOVA at α0.05. Percentile-based method was the best for Weibull [location (a), scale (b) and shape (c)] parameters estimations with mLogL = 116.66±21.89, while hybrid method was least-suitable (mLogL = 690.14±128.81) for Weibull parameters estimations. Quadratic mean diameter (Dq) was the only suitable predictor of Weibull parameters in Oban Forest.展开更多
Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by co...Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and thesimulation results show that satisfactory performances are obtained.展开更多
The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location par...The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location parameter. The Q-Q plot of the three-parameter lognormal distribution is widely used. To obtain the Q-Q plot one needs to iteratively try different values of the shape parameter and subjectively judge the linearity of the Q-Q plot. In this paper,a mathematical method was proposed to determine the value of the shape parameter so as to simplify the generation of the Q-Q plot. Then a new probability plot was proposed,which was more easily obtained and provided more accurate parameter estimates than the Q-Q plot. These are illustrated by three realworld examples.展开更多
In this paper, the location parameter δ_(a) in Weibull distribution i.e. the lower limiting CTOD toughness of high strength steel weldments is evaluated from Gleeble simulated coarse grained specimens. The Charpy-V t...In this paper, the location parameter δ_(a) in Weibull distribution i.e. the lower limiting CTOD toughness of high strength steel weldments is evaluated from Gleeble simulated coarse grained specimens. The Charpy-V transition temperature obtained from these specimens is transformed to a fracture toughness K_(IC) value at a given temperature using Sanz' relation. Then, the location parameter a is δ_(a) evaluated. The predicted location parameter arrives at agreement with the lowest CTOD value as obtained from thick multilayer weldments. The improvement of the fracture toughness of multilayer weldments needs the increase of the lowering limiting CTOD.toughness i.e. the toughness of the coarse grained zone.展开更多
The lifetime data of products with multiple failure modes which are collected from life testing are often fitted by the mixed Weibull distributions. Since the mixed Weibull distributions contain no less than five para...The lifetime data of products with multiple failure modes which are collected from life testing are often fitted by the mixed Weibull distributions. Since the mixed Weibull distributions contain no less than five parameters,the parameter estimation is difficult and inaccurate. In order to enhance the accuracy,a new method of parameter estimation based on Cuckoo search( CS) is proposed. An optimization model for the mixed Weibull distribution is formulated by minimizing the residual sum of squares. The optimal parameters are searched via CS algorithm. In the case study,the lifetime data come from the life testing of diesel injectors and are fitted by the twocomponent Weibull mixture. Regarding the maximum absolute error and the accumulative absolute error between estimated and observed values as the accuracy index of parameter estimation,the results of four parameter estimation methods that the graphic estimation method,the nonlinear least square method,the optimization method based on particle swarm optimization( PSO) and the proposed method are compared. The result shows that the proposed method is more efficient and more accurate than the other three methods.展开更多
基金supported by State Grid Information and Telecommunication Group Scientific and Technological Innovation Project“Research on Power Digital Space Technology System and Key Technologies”(Program No.SGIT0000XMJS2310456).
文摘By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金supported by the National Natural Science Foundation of China(61701140).
文摘To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.
基金supported by the National High-Tech Research and Development Program of China(863 Program)(No.2008AA093001)
文摘Cauchy priori distribution-based Bayesian AVO reflectivity inversion may lead to sparse estimates that are sensitive to large reflectivities. For the inversion, the computation of the covariance matrix and regularized terms requires prior estimation of model parameters, which makes the iterative inversion weakly nonlinear. At the same time, the relations among the model parameters are assumed linear. Furthermore, the reflectivities, the results of the inversion, or the elastic parameters with cumulative error recovered by integrating reflectivities are not well suited for detecting hydrocarbons and fuids. In contrast, in Bayesian linear AVO inversion, the elastic parameters can be directly extracted from prestack seismic data without linear assumptions for the model parameters. Considering the advantages of the abovementioned methods, the Bayesian AVO reflectivity inversion process is modified and Cauchy distribution is explored as a prior probability distribution and the time-variant covariance is also considered. Finally, we propose a new method for the weakly nonlinear AVO waveform inversion. Furthermore, the linear assumptions are abandoned and elastic parameters, such as P-wave velocity, S-wave velocity, and density, can be directly recovered from seismic data especially for interfaces with large reflectivities. Numerical analysis demonstrates that all the elastic parameters can be estimated from prestack seismic data even when the signal-to-noise ratio of the seismic data is low.
基金supported by National Natural Science Foundation of China (Grant Nos. 51135003, U1234208, 51205050)New Teachers' Fund for Doctor Stations of Ministry of Education of China (Grant No.20110042120020)+1 种基金Fundamental Research Funds for the Central Universities, China (Grant No. N110303003)China Postdoctoral Science Foundation (Grant No. 2011M500564)
文摘In the reliability designing procedure of the vehicle components, when the distribution styles of the random variables are unknown or non-normal distribution, the result evaluated contains great error or even is wrong if the reliability value R is larger than 1 by using the existent method, in which case the formula is necessary to be revised. This is obviously inconvenient for programming. Combining reliability-based optimization theory, robust designing method and reliability based sensitivity analysis, a new method for reliability robust designing is proposed. Therefore the influence level of the designing parameters’ changing to the reliability of vehicle components can be obtained. The reliability sensitivity with respect to design parameters is viewed as a sub-objective function in the multi-objective optimization problem satisfying reliability constraints. Given the first four moments of basic random variables, a fourth-moment technique and the proposed optimization procedure can obtain reliability-based robust design of automobile components with non-normal distribution parameters accurately and quickly. By using the proposed method, the distribution style of the random parameters is relaxed. Therefore it is much closer to the actual reliability problems. The numerical examples indicate the following: (1) The reliability value obtained by the robust method proposed increases (】0.04%) comparing to the value obtained by the ordinary optimization algorithm; (2) The absolute value of reliability-based sensitivity decreases (】0.01%), and the robustness of the products’ quality is improved accordingly. Utilizing the reliability-based optimization and robust design method in the reliability designing procedure reduces the manufacture cost and provides the theoretical basis for the reliability and robust design of the vehicle components.
基金Foundation item: Project(51064009) supported by the National Natural Science Foundation of ChinaProject(201104356) supported by the China Postdoctoral Science FoundationProject(20114BAB206030) supported by the Natural Science Foundation of Jiangxi Province,China
文摘Blast vibration analysis is one of the important foundations for studying the control technology of blast vibration damage. According to blast vibration live data that have been collected and the characteristics of short-time non-stationary random signals, the wavelet packet energy spectrum analysis for blast vibration signal has made by wavelet packet analysis technology and the signals were measured under different explosion parameters (the maximal section dose, the distance of blast source to measuring point and the section number of millisecond detonator). The results show that more than 95% frequency band energy of the signals sl-s8 concentrates at 0-200 Hz and the main vibration frequency bands of the signals sl-s8 are 70.313-125, 46.875-93.75, 15.625-93.75, 0-62.5, 42.969-125, 15.625-82.031, 7.813-62.5 and 0-62.5 Hz. Energy distributions for different frequency bands of blast vibration signal are obtained and the characteristics of energy distributions for blast vibration signal measured under different explosion parameters are analyzed. From blast vibration signal energy, the decreasing law of blast seismic waves measured under different explosion parameters was studied and the wavelet packet analysis is an effective means for studying seismic effect induced by blast.
文摘Spectrum distribution of the second order generalized distributed parameter system was discussed via the functional analysis and operator theory in Hilbert space. The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of bounded linear operator. This is theoretically important for studying the stabilization and asymptotic stability of the second order generalized distributed parameter system.
文摘In this paper, a two-parameter Lindley distribution, of which the one parameter Lindley distribution (LD) is a particular case, for modeling waiting and survival times data has been introduced. Its moments, failure rate function, mean residual life function, and stochastic orderings have been discussed. It is found that the expressions for failure rate function mean residual life function and stochastic orderings of the two-parameter LD shows flexibility over one-parameter LD and exponential distribution. The maximum likelihood method and the method of moments have been discussed for estimating its parameters. The distribution has been fitted to some data-sets relating to waiting times and survival times to test its goodness of fit to which earlier the one parameter LD has been fitted by others and it is found that to almost all these data-sets the two parameter LD distribution provides closer fits than those by the one parameter LD.
基金supported by the National Key Research and Development Plan of China under Grant(2016YFB0900600XXX)
文摘The modelling of the distribution transformer winding is the starting point and serves as important basis for the transformer characteristics analysis and the lightning pulse response prediction.A distributed parameters model can depict the winding characteristics accurately,but it requires complex calculations.Lumped parameter model requires less calculations,but its applicable frequency range is not wide.This paper studies the amplitude-frequency characteristics of the lightning wave,compares the transformer modelling methods and finally proposes a modified lumped parameter model,based on the above comparison.The proposed model minimizes the errors provoked by the lumped parameter approximation,and the hyperbolic functions of the distributed parameter model.By this modification it becomes possible to accurately describe the winding characteristics and rapidly obtain the node voltage response.The proposed model can provide theoretical and experimental support to lightning protection of the distribution transformer.
基金supported by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2009AL012)the Scienceand Technology Program of Education Bureau of Shandong Province, China (Grant No. J09LA12)
文摘In this paper, we present a new algorithm to solve a two-dimensional parabolic inverse problem with a source parameter, which appears in many physical phenomena. A linearized compact difference scheme for this problem is constructed using the finite difference method. The discretization accuracy is second-order in time and fourth-order in space. We obtain the unique solvability and present an alternating direction implicit algorithm to solve this difference scheme. The results of numerical experiments are presented to demonstrate the accuracy of this algorithm.
基金Supported by the National Natural Science Foundation of China(11671375 and 11471303)Natural Science Foundation of Anhui Provincial Education Department(KJ2017A171)
文摘In this paper, we devote to constructing the one-sided empirical Bayes(EB) test for the location parameter in the Gamma distribution by nonparametric method. Under some mild conditions, we prove that the EB test is asymptotically optimal with the rate of the order O(n^(-δs/(2s+1))), where 1/2 ≤ δ < 1 and s > 1 is a given natural number. An example is also given to illustrate that the conditions of the main theorems are easily satisfied.
基金partially sponsored by the Natural Science Foundation of Shanghai(No.23ZR1429300)the Innovation Fund of CNNC(Lingchuang Fund)。
文摘The estimation of model parameters is an important subject in engineering.In this area of work,the prevailing approach is to estimate or calculate these as deterministic parameters.In this study,we consider the model parameters from the perspective of random variables and describe the general form of the parameter distribution inference problem.Under this framework,we propose an ensemble Bayesian method by introducing Bayesian inference and the Markov chain Monte Carlo(MCMC)method.Experiments on a finite cylindrical reactor and a 2D IAEA benchmark problem show that the proposed method converges quickly and can estimate parameters effectively,even for several correlated parameters simultaneously.Our experiments include cases of engineering software calls,demonstrating that the method can be applied to engineering,such as nuclear reactor engineering.
基金Project(61673400)supported by the National Natural Science Foundation of ChinaProject(2015cx007)supported by the Innovation-driven Plan in Central South University,China+1 种基金Project(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of ChinaProjects(61590921,61590923)supported by the Major Program of the National Natural Science Foundation of China
文摘This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.
文摘Currently, the electrical system in Argentina is working at its maximum capacity, decreasing the margin between the installed power and demanded consumption, and drastically reducing the service life of transformer substations due to overload (since the margin for summer peaks is small). The advent of the Smart Grids allows electricity distribution companies to apply data analysis techniques to manage resources more efficiently at different levels (avoiding damages, better contingency management, maintenance planning, etc.). The Smart Grids in Argentina progresses slowly due to the high costs involved. In this context, the estimation of the lifespan reduction of distribution transformers is a key tool to efficiently manage human and material resources, maximizing the lifetime of this equipment. Despite the current state of the smart grids, the electricity distribution companies can implement it using the available data. Thermal models provide guidelines for lifespan estimation, but the adjustment to particular conditions, brands, or material quality is done by adjusting parameters. In this work we propose a method to adjust the parameters of a thermal model using Genetic Algorithms, comparing the estimation values of top-oil temperature with measurements from 315 kVA distribution transformers, located in the province of Tucumán, Argentina. The results show that, despite limited data availability, the adjusted model is suitable to implement a transformer monitoring system.
文摘Stem diameter distribution information is useful in forest management planning. Weibull function is flexible, and has been used in characterising diameter distributions, especially in single-species planted stands, the world over. We evaluated some Weibull parameter estimation methods for stem diameter characterisation in (Oban) multi-species Forest in southern Nigeria. Four study sites (Aking, Ekang, Erokut and Ekuri) were selected. Four 2 km-long transects situated at 600 m apart were laid in each location. Five 50m x 50m plots were alternately laid along each transect at 400 m apart (20 plots/location) using systematic sampling technique. Tree growth variables: diameter at breast height (Dbh), diameters at the base, middle and merchantable limit, total height, merchantable height, stem straightness, crown length and crown diameter were measured on all trees 〉 10 cm to compute model response variables such as mean diameters, basal area and stem volume. Weibull parameters estimation methods used were: moment-based, percentile-based, hybrid and maximum-likelihood (ML). Data were analysed using descriptive statistics, regression models and ANOVA at α0.05. Percentile-based method was the best for Weibull [location (a), scale (b) and shape (c)] parameters estimations with mLogL = 116.66±21.89, while hybrid method was least-suitable (mLogL = 690.14±128.81) for Weibull parameters estimations. Quadratic mean diameter (Dq) was the only suitable predictor of Weibull parameters in Oban Forest.
文摘Enlightened by distribution of creatures in natural ecology environment, the distributionpopulation-based genetic algorithm (DPGA) is presented in this paper. The searching capability ofthe algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and thesimulation results show that satisfactory performances are obtained.
基金National Natural Science Foundation of China(No.71371035)
文摘The two-parameter lognormal distribution is a variant of the normal distribution and the three-parameter lognormal distribution is an extension of the two-parameter lognormal distribution by introducing a location parameter. The Q-Q plot of the three-parameter lognormal distribution is widely used. To obtain the Q-Q plot one needs to iteratively try different values of the shape parameter and subjectively judge the linearity of the Q-Q plot. In this paper,a mathematical method was proposed to determine the value of the shape parameter so as to simplify the generation of the Q-Q plot. Then a new probability plot was proposed,which was more easily obtained and provided more accurate parameter estimates than the Q-Q plot. These are illustrated by three realworld examples.
文摘In this paper, the location parameter δ_(a) in Weibull distribution i.e. the lower limiting CTOD toughness of high strength steel weldments is evaluated from Gleeble simulated coarse grained specimens. The Charpy-V transition temperature obtained from these specimens is transformed to a fracture toughness K_(IC) value at a given temperature using Sanz' relation. Then, the location parameter a is δ_(a) evaluated. The predicted location parameter arrives at agreement with the lowest CTOD value as obtained from thick multilayer weldments. The improvement of the fracture toughness of multilayer weldments needs the increase of the lowering limiting CTOD.toughness i.e. the toughness of the coarse grained zone.
文摘The lifetime data of products with multiple failure modes which are collected from life testing are often fitted by the mixed Weibull distributions. Since the mixed Weibull distributions contain no less than five parameters,the parameter estimation is difficult and inaccurate. In order to enhance the accuracy,a new method of parameter estimation based on Cuckoo search( CS) is proposed. An optimization model for the mixed Weibull distribution is formulated by minimizing the residual sum of squares. The optimal parameters are searched via CS algorithm. In the case study,the lifetime data come from the life testing of diesel injectors and are fitted by the twocomponent Weibull mixture. Regarding the maximum absolute error and the accumulative absolute error between estimated and observed values as the accuracy index of parameter estimation,the results of four parameter estimation methods that the graphic estimation method,the nonlinear least square method,the optimization method based on particle swarm optimization( PSO) and the proposed method are compared. The result shows that the proposed method is more efficient and more accurate than the other three methods.