Two types of pisha-sandstones of purple sandstones and gray sandstones,widely distributing in the wind-water erosion crisscross region of China,were selected and used in laboratory experiments for a better understandi...Two types of pisha-sandstones of purple sandstones and gray sandstones,widely distributing in the wind-water erosion crisscross region of China,were selected and used in laboratory experiments for a better understanding of the drying-wetting-freezing weathering process resulting from the apportionment of water or salt solution to rock samples.Weathering experiments were carried out under the conditions of environment control(including temperature,moisture and salt solution).All rock samples were frequently subjected to 140 drying-wetting-freezing cycles.The influences of weathering process were evaluated.It was found that the different treatments of moisture and salt solution applications could affect the nature of the weathering products resulting from drying-wetting-freezing.It was also observed that salt solution could effectively alleviate the weathering of pisha-sandstones.Although not all the observations could be explained,it was apparent that simulated environmental factors had both direct and indirect effects on the weathering of rocks.展开更多
As one of typical areas in the world,northern Chinese Loess Plateau experiences serious wind-water erosion,which leads to widespread land degradation.During the past decades,an ecological engineering was implemented t...As one of typical areas in the world,northern Chinese Loess Plateau experiences serious wind-water erosion,which leads to widespread land degradation.During the past decades,an ecological engineering was implemented to reduce soil erosion and improve soil protection in this area.Thus,it is necessary to recognize the basic characteristics of soil protection for sustainable prevention and wind-water erosion control in the later stage.In this study,national wind erosion survey model and revised universal soil loss equation were used to analyze the spatiotemporal evolution and driving forces of soil protection in the wind-water erosion area of Chinese Loess Plateau during 2000–2020.Results revealed that:(1)during 2000–2020,total amount of soil protection reached up to 15.47×10^(8) t,which was realized mainly through water and soil conservation,accounting for 63.20%of the total;(2)soil protection was improved,with increases in both soil protection amount and soil retention rate.The amounts of wind erosion reduction showed a decrease trend,whereas the retention rate of wind erosion reduction showed an increase trend.Both water erosion reduction amount and retention rate showed increasing trends;and(3)the combined effects of climate change and human activities were responsible for the improvement of soil protection in the wind-water erosion area of Chinese Loess Plateau.The findings revealed the spatiotemporal patterns and driving forces of soil protection,and proposed strategies for future soil protection planning in Chinese Loess Plateau,which might provide valuable references for soil erosion control in other wind-water erosion areas of the world.展开更多
The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of bo...The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.展开更多
This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross regi...This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross region where soil erosion is most serious on rainfall and runoff as well as erosion and sediment.Based on the Landsat TM image data and measured data of runoff-sediment in that watershed,the paper analyzed the characteristics of watershed landscape pattern change and runoff-sediment and explored the relationship between landscape index and runoff-sediment yield by means of GIS and Fragstats.The results were included as follows.(1)Grassland was the dominant landscape.In terms of the number of patches and area change rate,from 1985 to 2010,cultivated land,forest land and construction land were most stable,followed by unused land.Unused land,grassland and cultivated land experienced the most dramatic conversion and maximally affected by human activities.(2)The inter-annual difference between annual runoff and annual sediment load was significant.Compared with the annual sediment load,the trend of decreasing runoff was more obvious.The correlation coefficient of runoff-sediment was 0.67,representing a significant correlation.(3)There was a significant correlation between the landscape index and runoff-sediment.The runoff was negatively correlated with the largest patch index,patch cohesion index,aggregation index and contagion index,but positively correlated with landscape morphology index and landscape division index.And the sediment was negatively correlated with the contagion index,aggregation index and plaque cohesion index,but positively correlated with other landscape indexes.The results indicate that with the increase of the largest patch index,patch cohesion index and aggregation index,the rainfall infiltration capacity increase obviously and the soil erosion reduce significantly.Therefore,increasing the largest patch index,patch cohesion and aggregation index of the watershed landscape can enhance the function of water storage and soil conservation as well as ecological optimization in the windwater erosion crisscross region.The results can provide theoretical support for the ecological environment construction and comprehensive utilization of water and soil resources.展开更多
All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River...All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.展开更多
The rapid expansion of cities seriously threatens the sustainable development of agriculture in China.Exploring the evolution law and influencing mechanism of agricultural regional system in the process of urbanizatio...The rapid expansion of cities seriously threatens the sustainable development of agriculture in China.Exploring the evolution law and influencing mechanism of agricultural regional system in the process of urbanization is of great significance for promoting sustainable development of agriculture in China.This paper takes the Loess Plateau(LP)as an example,and constructs a research framework to study the effect of urbanization on agricultural regional system through the lens of human-earth interaction,aiming at elucidating the evolutionary characteristics of agricultural regional system and revealing the impact law of urbanization.The results show that:(1)The growth trend of the evolution index of the agricultural regional system in the LP was significant,gradually evolving into a spatial pattern of"high in the north and south,low in the east and west".(2)The hot spot and sub-hot spot zones of the agricultural regional system evolution index in the LP were mainly distributed in the south and north,while the cold spot and sub-cold spot zones were primarily located in the center,east and west.(3)The levels of agricultural mechanization,agricultural land productivity,cropland area,and agricultural labor productivity were the main internal influencing factors of the agricultural regional system in the LP.The obstacle degree of agricultural mechanization level,cropland area,and the proportion of agricultural employees increased over time,while the obstacle degree of agricultural land productivity and grain yield capacity decreased.(4)The impact of population urbanization in the LP showed a spatial pattern of"inhibition in the southeast and promotion in the northwest",the impact of economic urbanization was dominated by inhibition,and the impact of land urbanization showed a spatial pattern of"promotion in the whole and inhibition in the local".This study provides ideas for the comprehensive research on the evolution and influencing factors of agricultural regional system,and offers practical references for achieving sustainable agricultural development in LP.展开更多
With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang T...With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.展开更多
[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temp...[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.展开更多
Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and...Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and soil erosion process in reclaimed forestland were studied in this paper. The results showed that the intensity of man-made soil erosion caused by forestland reclamation was 1000 times more than that of the natural erosion. From the analysis of soil physical and mechanical properties, in the 10th year after forestland was reclaimed, the clay content and physical clay content decreased 2.74 percentage point and 3.01 percentage point respectively, the >0.25mm waterstable aggregate content decreased 31.59 percentage point, the soil bulk density increased and soil shear strength decreased, all of which were easier to cause soil erosion. The correlation analysis showed that >0.25mm waterstable aggregate content was the key factor affecting soil erosion, and the secondary factors were soil coarse grain and soil shear strength. The relation between the >0.25mm waterstable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first year and the seventh erosion year were the turn years of the soil erosion intensity after the forestland was reclaimed, revealed that the change of eco-environment was the main cause to accelerate soil erosion, and the worse environment caused soil erosion to be serious rapidly.展开更多
As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed...As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.展开更多
Material exchange frequently occurs in gullies,and thus the relationship between a gullynetwork structure and sediment transport potential has attracted considerable interest.However,previous researches ignored the di...Material exchange frequently occurs in gullies,and thus the relationship between a gullynetwork structure and sediment transport potential has attracted considerable interest.However,previous researches ignored the difficulty of material transport from sources to sinks,and did not quantify the connectivity of a network structure.In this study,we used a graph model structure to model gully networks of six typical sample areas in the Loess Plateau of China and quantified gully network connectivity using four indexes:average node strength,accessibility from sources to sinks,potential flow,and network structural connectivity index.Results show that:(1)Reflected by different quantitative indexes,the trends of gully network connectivity in different regions are similar.From north to south,the connectivity of a sample area first increases and then decreases.(2)The more mature gullies have stronger network connectivity.Small resistance is conducive to material transport in the gullies.(3)The node connectivity index of the gully network shows a significant aggregation distribution in space,and node connectivity on the main channel is often stronger than that on the branch trench.These results not only deepen the understanding of the process and mechanism of loess gully geomorphic development and evolution but also provide a reference for geomorphic studies.展开更多
The quantitative evaluation on land use /cover change as well as its influence on landscape pattern under the background of returning grain plots to forestry is significant to the sustainable utilization of land resou...The quantitative evaluation on land use /cover change as well as its influence on landscape pattern under the background of returning grain plots to forestry is significant to the sustainable utilization of land resources and ecological environment reconstruction in the southern Ningxia.Based on multi-temporal remote sensing data from four periods of Landsat TM /ETM,and combination of ecological quantity analytical method with GIS,the change of land use /cover and landscape pattern in Pengyang County of Ningxia Province were analyzed.The conclusions showed that the amount of each land use type was changed with different degrees,the area of forest /grass land increased,while farmland and unused land decreased.The change of landscape pattern was characterized as that the degree of landscape fragmentation,mixed distribution of patches,diversity index and evenness index increased gradually and then decreased,the connectivity between patches decreased gradually and then increased,and landscape shape presented irregular.展开更多
The cover and size distributions of surface rock fragment in hillslopes were investigated by using digital photographing and treating technique in a small catchment in wind-water erosion crisscross region of the Loess...The cover and size distributions of surface rock fragment in hillslopes were investigated by using digital photographing and treating technique in a small catchment in wind-water erosion crisscross region of the Loess Plateau. The results indicated that the maximal cover of rock fragment was pre-sented at mid-position in steep hillslope. Rock fragment presented a general decreasing-trend along the hillslope in gentle hillslope. Rock fragment cover was positively related to gradient, rock fragment size decreased generally along the hillslope, and the size reduced with the gradient. The mean size of rock fragment was at a range of 6―20 mm in the steep hillslope, rock fragment size > 50 mm was rarely presented. The covers of rock fragment at different positions were markedly related to the quantities of rock fragment < 40 mm. The area of rock fragment of 2―50 mm accounted for 60% or more of the total area, dominating the distribution of rock fragment in the hillslopes.展开更多
[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of ...[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of the Qinghai-Tibet Plateau and its surrounding areas,especially the case of the impact caused by plateau phased uplift were studied based on paleomagnetic measurements.[Result]The increasing Qinghai-Tibet Plateau led to obvious transition from dry to cold in northwest China and it became dry quickly,which led to loess accumulation,replacement of vegetation types and human activity.Meanwhile,it was dry,and there was certain degree of climate changes in the area.[Conclusion] Qinghai-Tibet Plateau had far-reaching significance on basic climate characteristics in northwest China.展开更多
The propagation of seismic waves in viscous media,such as the loess plateau and shallow gas regions,alters their amplitude,frequency,and phase due to absorption attenuation,resulting in reductions in the resolution an...The propagation of seismic waves in viscous media,such as the loess plateau and shallow gas regions,alters their amplitude,frequency,and phase due to absorption attenuation,resulting in reductions in the resolution and fidelity of seismic profiles and the inaccurate identification of subtle structure and lithology.Q modeling and Q migration techniques proposed in this paper are used to compensate for the energy and frequency attenuation of seismic waves,obtain high-quality depth imaging results,and further enhance structural imaging to address the aforementioned problem.First,various prior information is utilized to construct an initial Q model.Q tomography techniques are employed to further optimize the precision of the initial Q model and build a high-precision Q model.Subsequently,Q prestack depth migration technology is employed to compensate for absorption and attenuation in the three-dimensional space along the seismic wave propagation path and correct the travel times,realizing the purposes of amplitude compensation,frequency recovery,and phase correction,which can help improve the wave group characteristics while enhancing the resolution.Model data and practical application results demonstrate that high-precision Q modeling and Q migration techniques can substantially improve the imaging quality of underground structures and formations in the loess plateau region with extremely complex surface and near-surface conditions.The resolution and fidelity of seismic data,as well as the capability to identify reservoirs,can be improved using these techniques.展开更多
The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface...The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface energy and water exchange over the Chinese Loess Plateau mesa region are evaluated by using data collected during the Loess Plateau land-atmosphere interaction pilot experiment (LOPEX04), which was conducted from 25 August to 12 September 2004 near Pingliang city, Gansu Province of China. The experiment was carried out in a region with a typical landscape of the Chinese Loess Plateau, known as "loess mesa". The experiment's field land utilizations were cornfield and fallow farmland, with the fallow field later used for rotating winter wheat. The autumn daily characteristics of heat and water exchange evidently differed between the mesa cornfield and fallow, and the imbalance term of the surface energy was large. This is discussed in terms of sampling errors in the flux observations-footprint; energy storage terms of soil and vegetation layers; contribution from air advections; and low and high frequency loss of turbulent fluxes and instruments bias. Comparison of energy components between the mesa cornfield and the lowland cornfield did not reveal any obvious difference. Inadequacies of the field observation equipment and experimental design emerged during the study, and some new research topics have emerged from this pilot experiment for future investigation.展开更多
The Liupan Mountains is located in the southern Ningxia Hui Autonomous Region of China, which forms an important dividing line between landforms and bio-geographic regions. The populated part of the Liupan Mountains r...The Liupan Mountains is located in the southern Ningxia Hui Autonomous Region of China, which forms an important dividing line between landforms and bio-geographic regions. The populated part of the Liupan Mountains region has suffered tremendous ecological damages over time due to population pressure, excessive demand and inappropriate use of agricultural land resources. In this paper, datasets of land use between 1990 and 2000 were obtained from Landsat TM imagery, and then spatial models were used to characterize landscape conditions. Also, the relationship between the population density and land use/cover change (LUCC) was analyzed. Results indicate that cropland, forestland, and urban areas have increased by 44,186ha, 9001ha and 1550ha, respectively while the grassland area has appreciably decreased by 54,025ha in the study period. The decrease in grassland was most notable. Of the grassland lost, 49.4% was converted into cropland. The largest annual land conversion rate in the study area was less than 2%. These changes are attributed to industrial and agricultural development and population growth. To improve the eco-economic conditions in the study region, population control, urbanization and development of an ecological friendly agriculture were suggested.展开更多
In China’s Loess Plateau severe gully erosion(LPGE)region,the shoulder-line is the most intuitive and unique manifestation of the loess landform,which divides a landform into positive and negative terrains(PNTs).The ...In China’s Loess Plateau severe gully erosion(LPGE)region,the shoulder-line is the most intuitive and unique manifestation of the loess landform,which divides a landform into positive and negative terrains(PNTs).The spatial combination model of PNTs is of great significance for revealing the evolution of the loess landform.This study modeled and proposed the Surface Nibble Degree(SND),which is a new index that reflects the comparison of the areas of PNTs.Based on 5 m DEMs and matched high-resolution remote sensing images,the PNTs of 164 complete watersheds in the LPGE were extracted accurately,and the SND index was calculated.The spatial distribution trend of SND was discussed,and the relationship between SND and the factors that affect the evolution mechanism of regional landform was explored further.Results show that:(1)The SND can be calculated formally.It can quantify the development of the loess landform well.(2)The SND of the LPGE has evident spatial differentiation that increases from southwest to northeast.High values appear in Shenmu of Shaanxi,Shilou of Shanxi,and northern Yanhe River,whereas the low values are mainly distributed in the southern loess tableland and the inclined elongated ridge area of Pingliang in Gansu and Guyuan in Ningxia.(3)In the Wuding River and Yanhe River,the SND decreases with the increase in flow length(FL).In the North-Luohe River and Jinghe River,the SND increases with FL.(4)SND is significantly correlated with gully density and sediment modulus and moderately correlated with hypsometric integral.As for the mechanism factors analysis,the relationship between loess thickness and SND is not obvious,but SND increased first and then decreased with the increase of precipitation and vegetation in each geographical division,and we found that the land use type of low coverage grassland has greater erosion potential.展开更多
Pollen records from the Chinese Loess Plateau revealed a detailed history of vegetation variation and associated climate changes during the last 13.0 ka BP. Before 12.1 ka BP, steppe or desert-steppe vegetation domina...Pollen records from the Chinese Loess Plateau revealed a detailed history of vegetation variation and associated climate changes during the last 13.0 ka BP. Before 12.1 ka BP, steppe or desert-steppe vegetation dominated landscape then was replaced by a coniferous forest under a generally wet climate (12.1-11.0 ka BP). The vegetation was deteriorated into steppe landscape and further into a desert-steppe landscape between 11.0 and 9.8 ka BP. After a brief episode of a cool and wet climate (9.8-9.6 ka BP), a relatively mild and dry condition prevailed during the early Holocene (9.6-7.6 ka BP). The most favourable climate of warm and humid period occurred during mid-Holocene (7.6-4.0 ka BP) marked by forest-steppe landscape and vegetation alternatively changed between steppe and desert-steppe from -4.0 to -1.0 ka BP.展开更多
Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecologica...Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecological carrying capacity and ecological surplus/loss in 1986-2002 on the Loess Plateau in northern Shaanxi Province. What is more, this paper has put forward the concept of ecological pressure index, set up ecological pressure index models, and ecological security grading systems, and the prediction models of different ecological footprints, ecological carrying capacity, ecological surplus and ecological safety change, and also has assessed the ecological footprint demands of 10,000 yuan GDE The results of this study are as follows: (1) the ecological carrying capacity in northern Shaanxi shows a decreasing trend, the difference of reducing range is the fastest; (2) the ecological footprint appears an increasing trend; (3) ecological pressure index rose to 0.91 from 0.44 during 1986-2002 on the Loess Plateau of northern Shaanxi with an increase of 47%; and (4) the ecological security in the study area is in a critical state, and the ecological oressure index has been increasing rapidlv.展开更多
基金supported by the National Natural Science Foundation of China (No.40271071)the Foundation of State Key Laboratory of Soil Erosion and Dryland Farming on the Less Plateau (No.10501-113 10501-165)
文摘Two types of pisha-sandstones of purple sandstones and gray sandstones,widely distributing in the wind-water erosion crisscross region of China,were selected and used in laboratory experiments for a better understanding of the drying-wetting-freezing weathering process resulting from the apportionment of water or salt solution to rock samples.Weathering experiments were carried out under the conditions of environment control(including temperature,moisture and salt solution).All rock samples were frequently subjected to 140 drying-wetting-freezing cycles.The influences of weathering process were evaluated.It was found that the different treatments of moisture and salt solution applications could affect the nature of the weathering products resulting from drying-wetting-freezing.It was also observed that salt solution could effectively alleviate the weathering of pisha-sandstones.Although not all the observations could be explained,it was apparent that simulated environmental factors had both direct and indirect effects on the weathering of rocks.
基金funded by the National Key Research and Development Program of China(2023YFF1305304)the National Natural Science Foundation of China(41801007)+3 种基金the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0201)the Science Technology Project of Hebei Academy of Sciences(2024PF11)the Basic Research Program of Shanxi Province(202203021211258,202103021223248)the Science and Technology Strategy Project of Shanxi Province(202304031401073).
文摘As one of typical areas in the world,northern Chinese Loess Plateau experiences serious wind-water erosion,which leads to widespread land degradation.During the past decades,an ecological engineering was implemented to reduce soil erosion and improve soil protection in this area.Thus,it is necessary to recognize the basic characteristics of soil protection for sustainable prevention and wind-water erosion control in the later stage.In this study,national wind erosion survey model and revised universal soil loss equation were used to analyze the spatiotemporal evolution and driving forces of soil protection in the wind-water erosion area of Chinese Loess Plateau during 2000–2020.Results revealed that:(1)during 2000–2020,total amount of soil protection reached up to 15.47×10^(8) t,which was realized mainly through water and soil conservation,accounting for 63.20%of the total;(2)soil protection was improved,with increases in both soil protection amount and soil retention rate.The amounts of wind erosion reduction showed a decrease trend,whereas the retention rate of wind erosion reduction showed an increase trend.Both water erosion reduction amount and retention rate showed increasing trends;and(3)the combined effects of climate change and human activities were responsible for the improvement of soil protection in the wind-water erosion area of Chinese Loess Plateau.The findings revealed the spatiotemporal patterns and driving forces of soil protection,and proposed strategies for future soil protection planning in Chinese Loess Plateau,which might provide valuable references for soil erosion control in other wind-water erosion areas of the world.
基金Under the auspices of Northeast Normal University Sci-tech Innovation Incubation Program(No.NENU-STC08017)European Commission FP7 Project―PRACTICE(No.ENVI-2008-226818)
文摘The objective of this study is to develop a unique modeling approach for fast assessment of massive soil erosion by water at a regional scale in the Loess Plateau, China. This approach relies on an understanding of both regional patterns of soil loss and its impact factors in the plateau area. Based on the regional characteristics of precipitation, vegetation and land form, and with the use of Landsat TM and ground investigation data, the entire Loess Plateau was first divided into 3 380 Fundamental Assessment Units (FAUs) to adapt to this regional modeling and fast assessment. A set of easily available parameters reflecting relevant water erosion factors at a regional scale was then developed, in which dynamic and static factors were discriminated. Arclnfo GIS was used to integrate all essential data into a central database. A resulting mathematical model was established to link the sediment yields and the selected variables on the basis of FAUs through overlay in GIS and multiple regression analyses. The sensitivity analyses and validation results show that this approach works effectively in assessing large area soil erosion, and also helps to understand the regional associations of erosion and its impact factors, and thus might significantly contribute to planning and policymaking for a large area erosion control in the Loess Plateau.
基金Sponsored by National Program on Key Basic Research Project(2011CB403303)A Special Fund for Central Public Welfare Research Institutes(HKY-2011-15)
文摘This paper selected the typical wind-water erosion crisscross region Xiliugou watershed for research to reveal the impact of the landscape pattern change of the underlying surface in wind-water erosion crisscross region where soil erosion is most serious on rainfall and runoff as well as erosion and sediment.Based on the Landsat TM image data and measured data of runoff-sediment in that watershed,the paper analyzed the characteristics of watershed landscape pattern change and runoff-sediment and explored the relationship between landscape index and runoff-sediment yield by means of GIS and Fragstats.The results were included as follows.(1)Grassland was the dominant landscape.In terms of the number of patches and area change rate,from 1985 to 2010,cultivated land,forest land and construction land were most stable,followed by unused land.Unused land,grassland and cultivated land experienced the most dramatic conversion and maximally affected by human activities.(2)The inter-annual difference between annual runoff and annual sediment load was significant.Compared with the annual sediment load,the trend of decreasing runoff was more obvious.The correlation coefficient of runoff-sediment was 0.67,representing a significant correlation.(3)There was a significant correlation between the landscape index and runoff-sediment.The runoff was negatively correlated with the largest patch index,patch cohesion index,aggregation index and contagion index,but positively correlated with landscape morphology index and landscape division index.And the sediment was negatively correlated with the contagion index,aggregation index and plaque cohesion index,but positively correlated with other landscape indexes.The results indicate that with the increase of the largest patch index,patch cohesion index and aggregation index,the rainfall infiltration capacity increase obviously and the soil erosion reduce significantly.Therefore,increasing the largest patch index,patch cohesion and aggregation index of the watershed landscape can enhance the function of water storage and soil conservation as well as ecological optimization in the windwater erosion crisscross region.The results can provide theoretical support for the ecological environment construction and comprehensive utilization of water and soil resources.
基金Under the auspices of National Basic Research Program of China(No.2011CB403303)Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.162101510004)Foundation of Yellow River Institute of Hydraulic Research of China(No.HKY-2011-15)
文摘All characteristics of vegetation,runoff and sediment from 1960 to 2010 in the Xiliu Gully Watershed,which is a representative watershed in wind-water erosion crisscross region in the upper reaches of the Yellow River of China,have been analyzed in this study.Based on the remote sensing image data,and used multi-spectral interpretation method,the characteristics of vegetation variation in the Xiliu Gully Watershed have been analyzed.And the rules of precipitation,runoff and sediment's changes have been illuminated by using mathematical statistics method.What′s more,the influence mechanism of vegetation on runoff and sediment has been discussed by using the data obtained from artificial rainfall simulation test.The results showed that the main vegetation type was given priority to low coverage,and the area of the low vegetation coverage type was reducing year by year.On the country,the area of the high vegetation coverage type was gradually increasing.In a word,vegetation conditions had got better improved since 2000 when the watershed management project started.The average annual precipitation of the river basin also got slightly increase in 2000–2010.The average annual runoff reduced by 37.5%,and the average annual sediment reduced by 73.9% in the same period.The results of artificial rainfall simulation tests showed that the improvement of vegetation coverage could increase not only soil infiltration but also vegetation evapotranspiration,and then made the rainfall-induced runoff production decrease.Vegetation root system could increases the resistance ability of soil to erosion,and vegetation aboveground part could reduce raindrop kinetic energy and splash soil erosion.Therefore,with the increase of vegetation coverage,the rainfall-induced sediment could decrease.
基金funded by the Major Program of National Natural Science Foundation of China(Grant No.42293271)the National Natural Science Foundation of China(Grant No.42171208).
文摘The rapid expansion of cities seriously threatens the sustainable development of agriculture in China.Exploring the evolution law and influencing mechanism of agricultural regional system in the process of urbanization is of great significance for promoting sustainable development of agriculture in China.This paper takes the Loess Plateau(LP)as an example,and constructs a research framework to study the effect of urbanization on agricultural regional system through the lens of human-earth interaction,aiming at elucidating the evolutionary characteristics of agricultural regional system and revealing the impact law of urbanization.The results show that:(1)The growth trend of the evolution index of the agricultural regional system in the LP was significant,gradually evolving into a spatial pattern of"high in the north and south,low in the east and west".(2)The hot spot and sub-hot spot zones of the agricultural regional system evolution index in the LP were mainly distributed in the south and north,while the cold spot and sub-cold spot zones were primarily located in the center,east and west.(3)The levels of agricultural mechanization,agricultural land productivity,cropland area,and agricultural labor productivity were the main internal influencing factors of the agricultural regional system in the LP.The obstacle degree of agricultural mechanization level,cropland area,and the proportion of agricultural employees increased over time,while the obstacle degree of agricultural land productivity and grain yield capacity decreased.(4)The impact of population urbanization in the LP showed a spatial pattern of"inhibition in the southeast and promotion in the northwest",the impact of economic urbanization was dominated by inhibition,and the impact of land urbanization showed a spatial pattern of"promotion in the whole and inhibition in the local".This study provides ideas for the comprehensive research on the evolution and influencing factors of agricultural regional system,and offers practical references for achieving sustainable agricultural development in LP.
文摘With the continuous development of economy and changes in people’s lifestyle,rural domestic waste brought about serious harm to water,air,human health,ecological landscape and so forth.In this paper,taking Longfang Town in Loess Plateau region as example,the source,amount and harms of rural domestic waste were analyzed firstly,as well as the current situation and existing problems of treatment,and then a suitable waste disposal technology for the town was chosen,finally the reasonable treatment methods combining new countryside and non-new countryside with township was summed up,so as to realize the reduction,harmless and resource treatment of rural domestic waste.
文摘[Objective] The aim was to study the climate changes characteristics in the hilly region of the loess plateau and its influence on agricultural production.[Method] Taking Yan’an City as an example,and by dint of temperature and precipitation in nine meteorological stations from 1957 to 2007 and accumulated anomaly curve,linear regression and relevant analysis,the climate changes characteristics in 51 years in Yan’an were expounded.The climate changes in the hilly region of the loess plateau were studied and its influences on agricultural production were concluded.[Result] The characteristics of climate changes in the hilly region were as follow:high temperature in winter and warm winter trend was clearly;the temperature in spring enhanced fast and the drought disaster was increasing worse;rainy days occurred now and then in autumn.The climate changes had different levels of influences on agricultural production in Yan’an City.Because of rising temperature in winter,facility agriculture was vigorously developed and the apple range expanded;in the meantime,because of rising temperature in spring,drought was worsen and sowing in spring can not proceed;constant rain in autumn damaged the quality of date.[Conclusion] The study provided theoretical basis for the regional agricultural production and agricultural structure adjustment.
文摘Serious soil erosion has made the eco-environment fragile in the Loess Plateau. Based on the 10-year data observed from 1989 to 1998 in the Ziwuling Survey Station in loess hilly region, the eco-environment change and soil erosion process in reclaimed forestland were studied in this paper. The results showed that the intensity of man-made soil erosion caused by forestland reclamation was 1000 times more than that of the natural erosion. From the analysis of soil physical and mechanical properties, in the 10th year after forestland was reclaimed, the clay content and physical clay content decreased 2.74 percentage point and 3.01 percentage point respectively, the >0.25mm waterstable aggregate content decreased 31.59 percentage point, the soil bulk density increased and soil shear strength decreased, all of which were easier to cause soil erosion. The correlation analysis showed that >0.25mm waterstable aggregate content was the key factor affecting soil erosion, and the secondary factors were soil coarse grain and soil shear strength. The relation between the >0.25mm waterstable aggregate content, the soil sheer strength and the soil erosion intensity were analyzed, which showed that the first year and the seventh erosion year were the turn years of the soil erosion intensity after the forestland was reclaimed, revealed that the change of eco-environment was the main cause to accelerate soil erosion, and the worse environment caused soil erosion to be serious rapidly.
基金supported by the National Basic Research Program of China (2007CB407207)National Natural Science Foundation of China (30800888)
文摘As more and more farmland is converted to forestry, the need for effective decision support regarding the use of land in the fragile ecological environment of the Loess Plateau hilly-gully area. The Luoyugou watershed was chosen as the study area to calculate the single dynamic degree, integrated dynamic degree, and change indexes of land use, as well as the land-use type transition matrix. This was done by interpreting the TM and SPOT images of the Luoyugou watershed in 1986, 1995, and2004 and making statistical analysis. The results of ou statistical analysis show that the conversion of slope farm land to terrace and forest land plays a dominant role in land-use changes in the Luoyugou watershed from 1986 to2004. The land-use changes are mainly driven by popula tion growth, socio-economic development, consume spending, and investment in forest ecology.
基金supported by the National Natural Science Foundation of China(Grant Nos.42271421 and 41930102)。
文摘Material exchange frequently occurs in gullies,and thus the relationship between a gullynetwork structure and sediment transport potential has attracted considerable interest.However,previous researches ignored the difficulty of material transport from sources to sinks,and did not quantify the connectivity of a network structure.In this study,we used a graph model structure to model gully networks of six typical sample areas in the Loess Plateau of China and quantified gully network connectivity using four indexes:average node strength,accessibility from sources to sinks,potential flow,and network structural connectivity index.Results show that:(1)Reflected by different quantitative indexes,the trends of gully network connectivity in different regions are similar.From north to south,the connectivity of a sample area first increases and then decreases.(2)The more mature gullies have stronger network connectivity.Small resistance is conducive to material transport in the gullies.(3)The node connectivity index of the gully network shows a significant aggregation distribution in space,and node connectivity on the main channel is often stronger than that on the branch trench.These results not only deepen the understanding of the process and mechanism of loess gully geomorphic development and evolution but also provide a reference for geomorphic studies.
基金Supported by National Natural Science Foundation(41161081)
文摘The quantitative evaluation on land use /cover change as well as its influence on landscape pattern under the background of returning grain plots to forestry is significant to the sustainable utilization of land resources and ecological environment reconstruction in the southern Ningxia.Based on multi-temporal remote sensing data from four periods of Landsat TM /ETM,and combination of ecological quantity analytical method with GIS,the change of land use /cover and landscape pattern in Pengyang County of Ningxia Province were analyzed.The conclusions showed that the amount of each land use type was changed with different degrees,the area of forest /grass land increased,while farmland and unused land decreased.The change of landscape pattern was characterized as that the degree of landscape fragmentation,mixed distribution of patches,diversity index and evenness index increased gradually and then decreased,the connectivity between patches decreased gradually and then increased,and landscape shape presented irregular.
基金the Program for Innovative Research Team in University (Grant No. IRT0749)the National Natural Science Foundation of China (Grant No. 50479063)
文摘The cover and size distributions of surface rock fragment in hillslopes were investigated by using digital photographing and treating technique in a small catchment in wind-water erosion crisscross region of the Loess Plateau. The results indicated that the maximal cover of rock fragment was pre-sented at mid-position in steep hillslope. Rock fragment presented a general decreasing-trend along the hillslope in gentle hillslope. Rock fragment cover was positively related to gradient, rock fragment size decreased generally along the hillslope, and the size reduced with the gradient. The mean size of rock fragment was at a range of 6―20 mm in the steep hillslope, rock fragment size > 50 mm was rarely presented. The covers of rock fragment at different positions were markedly related to the quantities of rock fragment < 40 mm. The area of rock fragment of 2―50 mm accounted for 60% or more of the total area, dominating the distribution of rock fragment in the hillslopes.
文摘[Objective]The aim was to study the influence of Qinghai-Tibet Plateau uplift on regional climate in China.[Method] Trough relevant study of Qinghai-Tibet Plateau and its surrounding movement,the tectonic movement of the Qinghai-Tibet Plateau and its surrounding areas,especially the case of the impact caused by plateau phased uplift were studied based on paleomagnetic measurements.[Result]The increasing Qinghai-Tibet Plateau led to obvious transition from dry to cold in northwest China and it became dry quickly,which led to loess accumulation,replacement of vegetation types and human activity.Meanwhile,it was dry,and there was certain degree of climate changes in the area.[Conclusion] Qinghai-Tibet Plateau had far-reaching significance on basic climate characteristics in northwest China.
基金supported by the China National Offshore Oil Corporation’s“14th Five-Year Plan”major scientific and technological project,“Key Technologies for Onshore Unconventional Natural Gas Exploration and Development”(KJGG2021-1000).
文摘The propagation of seismic waves in viscous media,such as the loess plateau and shallow gas regions,alters their amplitude,frequency,and phase due to absorption attenuation,resulting in reductions in the resolution and fidelity of seismic profiles and the inaccurate identification of subtle structure and lithology.Q modeling and Q migration techniques proposed in this paper are used to compensate for the energy and frequency attenuation of seismic waves,obtain high-quality depth imaging results,and further enhance structural imaging to address the aforementioned problem.First,various prior information is utilized to construct an initial Q model.Q tomography techniques are employed to further optimize the precision of the initial Q model and build a high-precision Q model.Subsequently,Q prestack depth migration technology is employed to compensate for absorption and attenuation in the three-dimensional space along the seismic wave propagation path and correct the travel times,realizing the purposes of amplitude compensation,frequency recovery,and phase correction,which can help improve the wave group characteristics while enhancing the resolution.Model data and practical application results demonstrate that high-precision Q modeling and Q migration techniques can substantially improve the imaging quality of underground structures and formations in the loess plateau region with extremely complex surface and near-surface conditions.The resolution and fidelity of seismic data,as well as the capability to identify reservoirs,can be improved using these techniques.
文摘The Loess Plateau, located in northern China, has a significant impact on the climate and ecosystem evolvement over the East Asian continent. In this paper, the preliminary autumn daily characteristics of land surface energy and water exchange over the Chinese Loess Plateau mesa region are evaluated by using data collected during the Loess Plateau land-atmosphere interaction pilot experiment (LOPEX04), which was conducted from 25 August to 12 September 2004 near Pingliang city, Gansu Province of China. The experiment was carried out in a region with a typical landscape of the Chinese Loess Plateau, known as "loess mesa". The experiment's field land utilizations were cornfield and fallow farmland, with the fallow field later used for rotating winter wheat. The autumn daily characteristics of heat and water exchange evidently differed between the mesa cornfield and fallow, and the imbalance term of the surface energy was large. This is discussed in terms of sampling errors in the flux observations-footprint; energy storage terms of soil and vegetation layers; contribution from air advections; and low and high frequency loss of turbulent fluxes and instruments bias. Comparison of energy components between the mesa cornfield and the lowland cornfield did not reveal any obvious difference. Inadequacies of the field observation equipment and experimental design emerged during the study, and some new research topics have emerged from this pilot experiment for future investigation.
基金Under the auspices of the National Key Science and Technology Support Program of China (No. 2006BCA01A07-2)National Natural Science Foundation of China (No. 40671153)+1 种基金Hunan Land Resource Bureau Program (No. 2007-15)Hunan Educa-tion Bureau Program (No. 08C348)
文摘The Liupan Mountains is located in the southern Ningxia Hui Autonomous Region of China, which forms an important dividing line between landforms and bio-geographic regions. The populated part of the Liupan Mountains region has suffered tremendous ecological damages over time due to population pressure, excessive demand and inappropriate use of agricultural land resources. In this paper, datasets of land use between 1990 and 2000 were obtained from Landsat TM imagery, and then spatial models were used to characterize landscape conditions. Also, the relationship between the population density and land use/cover change (LUCC) was analyzed. Results indicate that cropland, forestland, and urban areas have increased by 44,186ha, 9001ha and 1550ha, respectively while the grassland area has appreciably decreased by 54,025ha in the study period. The decrease in grassland was most notable. Of the grassland lost, 49.4% was converted into cropland. The largest annual land conversion rate in the study area was less than 2%. These changes are attributed to industrial and agricultural development and population growth. To improve the eco-economic conditions in the study region, population control, urbanization and development of an ecological friendly agriculture were suggested.
基金National Natural Science Foundation of China,No.41871288,No.41930102The Fundamental Research Funds for the Central Universities,No.GK202003064。
文摘In China’s Loess Plateau severe gully erosion(LPGE)region,the shoulder-line is the most intuitive and unique manifestation of the loess landform,which divides a landform into positive and negative terrains(PNTs).The spatial combination model of PNTs is of great significance for revealing the evolution of the loess landform.This study modeled and proposed the Surface Nibble Degree(SND),which is a new index that reflects the comparison of the areas of PNTs.Based on 5 m DEMs and matched high-resolution remote sensing images,the PNTs of 164 complete watersheds in the LPGE were extracted accurately,and the SND index was calculated.The spatial distribution trend of SND was discussed,and the relationship between SND and the factors that affect the evolution mechanism of regional landform was explored further.Results show that:(1)The SND can be calculated formally.It can quantify the development of the loess landform well.(2)The SND of the LPGE has evident spatial differentiation that increases from southwest to northeast.High values appear in Shenmu of Shaanxi,Shilou of Shanxi,and northern Yanhe River,whereas the low values are mainly distributed in the southern loess tableland and the inclined elongated ridge area of Pingliang in Gansu and Guyuan in Ningxia.(3)In the Wuding River and Yanhe River,the SND decreases with the increase in flow length(FL).In the North-Luohe River and Jinghe River,the SND increases with FL.(4)SND is significantly correlated with gully density and sediment modulus and moderately correlated with hypsometric integral.As for the mechanism factors analysis,the relationship between loess thickness and SND is not obvious,but SND increased first and then decreased with the increase of precipitation and vegetation in each geographical division,and we found that the land use type of low coverage grassland has greater erosion potential.
基金National Science Fund for Distinguished Young Scholars, 40025105 National Natural Science Foundation of China, No. 40331012+3 种基金 NSF Project, No.EAR 0402509 No.BCS 00-78557 Doctoral Fund from Southwest University, No. 104220-20710904 CSTC, No.2009BB7112
文摘Pollen records from the Chinese Loess Plateau revealed a detailed history of vegetation variation and associated climate changes during the last 13.0 ka BP. Before 12.1 ka BP, steppe or desert-steppe vegetation dominated landscape then was replaced by a coniferous forest under a generally wet climate (12.1-11.0 ka BP). The vegetation was deteriorated into steppe landscape and further into a desert-steppe landscape between 11.0 and 9.8 ka BP. After a brief episode of a cool and wet climate (9.8-9.6 ka BP), a relatively mild and dry condition prevailed during the early Holocene (9.6-7.6 ka BP). The most favourable climate of warm and humid period occurred during mid-Holocene (7.6-4.0 ka BP) marked by forest-steppe landscape and vegetation alternatively changed between steppe and desert-steppe from -4.0 to -1.0 ka BP.
基金National Natural Science Foundation of China, No.40371003 Ministry of Education of China, No.01158 Master Research Project of Shaanxi Normal University
文摘Using the theory and method of the ecological footprint, and combining the changes of regional land use, resource environment, population, society and economy, this paper calculated the ecological footprint, ecological carrying capacity and ecological surplus/loss in 1986-2002 on the Loess Plateau in northern Shaanxi Province. What is more, this paper has put forward the concept of ecological pressure index, set up ecological pressure index models, and ecological security grading systems, and the prediction models of different ecological footprints, ecological carrying capacity, ecological surplus and ecological safety change, and also has assessed the ecological footprint demands of 10,000 yuan GDE The results of this study are as follows: (1) the ecological carrying capacity in northern Shaanxi shows a decreasing trend, the difference of reducing range is the fastest; (2) the ecological footprint appears an increasing trend; (3) ecological pressure index rose to 0.91 from 0.44 during 1986-2002 on the Loess Plateau of northern Shaanxi with an increase of 47%; and (4) the ecological security in the study area is in a critical state, and the ecological oressure index has been increasing rapidlv.