期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Spectral Analysis and Application of Low-degree Modified Spheroidal Hotine Kernel 被引量:2
1
作者 Jian MA Ziqing WEI Hongfei REN 《Journal of Geodesy and Geoinformation Science》 2020年第3期104-114,共11页
The traditional spheroidal kernel results in the spectrum leakage,and the utilization rate of the removed degrees of the measured data is low.Hence,a kind of spheroidal kernel whose high-and low-degrees are both modif... The traditional spheroidal kernel results in the spectrum leakage,and the utilization rate of the removed degrees of the measured data is low.Hence,a kind of spheroidal kernel whose high-and low-degrees are both modified is introduced in this research,which is exampled by the Hotine kernel.In addition,the low-degree modified spheroidal kernel is proposed.Either cosine or linear modification factors can be utilized.The modified kernel functions can effectively control the spectrum leakage compared with the traditional spheroidal kernel.Furthermore,the modified kernel augments the contribution rate of the measured data to height anomaly in the modified frequency domain.The experimental results show that the accuracy of the quasi-geoid by the cosine or linear low-degree modified kernel is higher than that by the traditional spheroidal kernel.And the accuracy equals the accuracy of the quasi-geoid using the spheroidal kernel with high-and low-degrees modified approximately when the low-degree modification bandwidths of these two kinds of kernels are the same.Since the computational efficiency of the low-degree modified kernel is much higher,the low-degree modified kernel behaves better in constructing the(quasi-)geoid based on Stokes-Helmert or Hotine-Helmert boundary-value theory. 展开更多
关键词 the spheroidal hotine kernel cosine low-degree modification linear low-degree modification spectral analysis spectrum leakage the contribution rate
下载PDF
确定似大地水准面的Hotine-Helmert边值解算模型 被引量:6
2
作者 马健 魏子卿 任红飞 《测绘学报》 EI CSCD 北大核心 2019年第2期153-160,共8页
空间大地测量技术的发展使大地高的观测成为可能,从而为第二大地边值问题的研究带来了新的机遇,本文对基于Helmert第二压缩法的第二边值问题(简称为Hotine-Helmert边值问题)展开研究。首先介绍了地形直接、间接影响的定义与算法,然后推... 空间大地测量技术的发展使大地高的观测成为可能,从而为第二大地边值问题的研究带来了新的机遇,本文对基于Helmert第二压缩法的第二边值问题(简称为Hotine-Helmert边值问题)展开研究。首先介绍了地形直接、间接影响的定义与算法,然后推导了Hotine-Helmert边值问题的解算模型。Hotine-Helmert边值理论无须计算地形压缩对重力的次要间接影响,因而较Stokes-Helmert边值理论更简单。此外,文中引入了一种低阶修正的Hotine截断核函数,该核函数较传统的截断核函数能有效地改善似大地水准面的解算精度。为了验证本文构建的Hotine-Helmert边值解算模型的有效性和实用性,本文将EIGEN-6C4模型的前360阶作为参考模型,利用Hotine-Helmert边值解算模型构建了我国中部地区6°×4°范围、1.5′×1.5′分辨率的重力似大地水准面,其精度达到±4.8 cm。 展开更多
关键词 hotine-Helmert边值解算模型 地形直接、间接影响 低阶修正的截断核函数 似大地水准面
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部