Let N = {0, 1, ···, n-1}. A strongly idempotent self-orthogonal row Latin magic array of order n(SISORLMA(n) for short) based on N is an n × n array M satisfying the following properties:(1)...Let N = {0, 1, ···, n-1}. A strongly idempotent self-orthogonal row Latin magic array of order n(SISORLMA(n) for short) based on N is an n × n array M satisfying the following properties:(1) each row of M is a permutation of N, and at least one column is not a permutation of N;(2) the sums of the n numbers in every row and every column are the same;(3) M is orthogonal to its transpose;(4) the main diagonal and the back diagonal of M are 0, 1, ···, n-1 from left to right. In this paper, it is proved that an SISORLMA(n)exists if and only if n ? {2, 3}. As an application, it is proved that a nonelementary rational diagonally ordered magic square exists if and only if n ? {2, 3}, and a rational diagonally ordered magic square exists if and only if n ≠2.展开更多
基金Supported by the National Natural Science Foundation of China(No.11271089)Guangxi Nature Science Foundation(No.2012GXNSFAA053001)+1 种基金Key Foundation of Guangxi Education Department(No.201202ZD012)Guangxi “Ba Gui” Team for Research and Innovation
文摘Let N = {0, 1, ···, n-1}. A strongly idempotent self-orthogonal row Latin magic array of order n(SISORLMA(n) for short) based on N is an n × n array M satisfying the following properties:(1) each row of M is a permutation of N, and at least one column is not a permutation of N;(2) the sums of the n numbers in every row and every column are the same;(3) M is orthogonal to its transpose;(4) the main diagonal and the back diagonal of M are 0, 1, ···, n-1 from left to right. In this paper, it is proved that an SISORLMA(n)exists if and only if n ? {2, 3}. As an application, it is proved that a nonelementary rational diagonally ordered magic square exists if and only if n ? {2, 3}, and a rational diagonally ordered magic square exists if and only if n ≠2.