To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential informat...Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential information for scientific research and public awareness.There are obvious discrepancies among the results that have been reported so far,which may be revised and updated later.Here we applied a novel and reliable long-period coda moment magnitude method to the two large earthquakes.The moment magnitudes(with one standard error)are 7.95±0.013 and 7.86±0.012,respectively,which are larger than all the previous reports.The first mainshock,which matches the largest recorded earthquakes in the Turkish history,is slightly larger than the second one by 0.11±0.035 in magnitude or by 0.04 to 0.18 at 95%confidence level.展开更多
The earthquake magnitude probability distribution is one of the underlying input data for certain earthquake analyses, such as probabilistic seismic hazard analysis. Nowadays, the method proposed by McGuire and Arabas...The earthquake magnitude probability distribution is one of the underlying input data for certain earthquake analyses, such as probabilistic seismic hazard analysis. Nowadays, the method proposed by McGuire and Arabasz (1990) is commonly used for obtaining the (simulated) earthquake magnitude probability distributions. However, based on the observed earthquake data in 5 regions (Taiwan, Japan, California, Turkey, and Greece), the model did not fit the observation well. Instead, all of the case studies show that using the newly proposed gamma distribution can improve the simulation significantly compared to the conventional method.展开更多
In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence...In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.展开更多
Alcoholic liver disease(ALD) is a major cause of alcoholrelated morbidity and mortality.Its presentation ranges from fatty liver to alcoholic hepatitis(AH),cirrhosis,and hepatocellular carcinoma.Although the amount an...Alcoholic liver disease(ALD) is a major cause of alcoholrelated morbidity and mortality.Its presentation ranges from fatty liver to alcoholic hepatitis(AH),cirrhosis,and hepatocellular carcinoma.Although the amount and pattern of alcohol consumption is a well recognized predisposing factor for the development of serious liver pathology,environmental factors and the host's genetic makeup may also play significant roles that have not yet been entirely explored.Continuing alcohol consumption is a major factor that influences the survival of patients with AH.The presence of cirrhosis at presentation or its development on follow up is a major factor determining the outcome in the long run.This chapter deals with the epidemiology and magnitude of ALD in general and AH in particular.展开更多
In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrenc...In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.展开更多
The magnitude-frequency(MF) relationship of debris flows is the basis for engineering designs and risk quantification. However, because of the lack of debris flow monitoring data, research progress in this area has be...The magnitude-frequency(MF) relationship of debris flows is the basis for engineering designs and risk quantification. However, because of the lack of debris flow monitoring data, research progress in this area has been relatively slow. The MF relationship of debris flows in Jiangjia Gully, Yunnan Province was evaluated based on a regression analysis of 178 debris flow events that occurred from 1987-2004. The magnitude-cumulative frequency(MCF) relationship of the debris flows in the Jiangjia Gully is consistent with the linear logarithmic transformation function. Moreover, observed data for debris flows in Hunshui Gully of Yunnan Province and Huoshao Gully, Liuwan Gully, and Niwan Gully of Gansu Province were used to verify the function. The results showed that the MCF relationship of highfrequency debris flows is consistent with the power law equation, although the regression coefficients in the equation are considerably different. Further analysis showed a strong correlation between the differences in the constants and the drainage area and daily maximum precipitation.展开更多
Magnitude and distance of major potential source are needed in order to determine duration time of artificial ground motion and to determine the type of response spectrum (near field or far field) when using the seism...Magnitude and distance of major potential source are needed in order to determine duration time of artificial ground motion and to determine the type of response spectrum (near field or far field) when using the seismic intensity zonation map. The magnitude probabilistic distribution function of seismic belt and the magnitude and space joint distribution function for given intensity of the site in a potential Source are provided. Then the basicformula of calculating expected magnitude and expected distance are developed. Several examples for calculating expected magnitude and expected distance in northern China are discussed. These results show that expected magnitude and expected distance are related not only to geometry of potential source and magnitude but also to the intensity of the site with certain exceeding probability.展开更多
Fault parameters are important in earthquake hazard analysis.In this paper,theoretical relationships between moment magnitude and fault parameters including subsurface rupture length,downdip rupture width,rupture area...Fault parameters are important in earthquake hazard analysis.In this paper,theoretical relationships between moment magnitude and fault parameters including subsurface rupture length,downdip rupture width,rupture area,and average slip over the fault surface are deduced based on seismological theory.These theoretical relationships are further simplified by applying similarity conditions and an unique form is established.Then,combining the simplified theoretical relationships between moment magnitude and fault parameters with seismic source data selected in this study,a practical semi-empirical relationship is established.The seismic source data selected is also to used to derive empirical relationships between moment magnitude and fault parameters by the ordinary least square regression method.Comparisons between semi-empirical relationships and empirical relationships show that the former depict distribution trends of data better than the latter.It is also observed that downdip rupture widths of strike slip faults are saturated when moment magnitude is more than 7.0,but downdip rupture widths of dip slip faults are not saturated in the molnent magnitude rangcs of this study.展开更多
In this paper,we give a brief introduction to the proposal and development history of the earthquake magnitude concept. Moment magnitude MWis the best physical quantity for measuring earthquakes. Compared with other m...In this paper,we give a brief introduction to the proposal and development history of the earthquake magnitude concept. Moment magnitude MWis the best physical quantity for measuring earthquakes. Compared with other magnitude scales used traditionally,moment magnitude is not saturated for all earthquakes,regardless of big and small earthquakes,deep and shallow earthquakes,far field and near field seismic data,geodetic and geological data,moment magnitude can be measured,and can be connected with wellknown magnitude scales such as surface wave magnitude MS. Moment magnitude is a uniform magnitude scale,which is suitable for statistics with wide magnitude range.Moment magnitude is the preferred magnitude selected by the International Seismological community,and it is preferred by the departments responsible for publishing seismic information to the public. Moment magnitude is a uniform magnitude scale,which is suitable for statistics with wide magnitude range. Moment magnitude is a preferred magnitude for international seismology,it is preferred by the agency responsible for providing information about earthquakes to the public. We provide all formulas used in the calculation of moment magnitude,and the calculation steps in detail. We also analyzed some problems and rules to solve these problems by using different formulas and numerical value calculation steps.展开更多
With the development of unconventional shale gas in the southern Sichuan Basin,seismicity in the region has increased significantly in recent years.Though the existing sparse regional seismic stations can capture most...With the development of unconventional shale gas in the southern Sichuan Basin,seismicity in the region has increased significantly in recent years.Though the existing sparse regional seismic stations can capture most earthquakes with ML≥2.5,a great number of smaller earthquakes are often omitted due to limited detection capacity.With the advent of portable seismic nodes,many dense arrays for monitoring seismicity in the unconventional oil and gas fields have been deployed,and the magnitudes of those earthquakes are key to understand the local fault reactivation and seismic potentials.However,the current national standard for determining the local magnitudes was not specifically designed for monitoring stations in close proximity,utilizing a calibration function with a minimal resolution of 5 km in the epicentral distance.That is,the current national standard tends to overestimate the local magnitudes for stations within short epicentral distances,and can result in discrepancies for dense arrays.In this study,we propose a new local magnitude formula which corrects the overestimated magnitudes for shorter distances,yielding accurate event magnitudes for small earthquakes in the Changning-Zhaotong shale gas field in the southern Sichuan Basin,monitored by dense seismic arrays in close proximity.The formula is used to determine the local magnitudes of 7,500 events monitored by a two-phased dense array with several hundred 5 Hz 3 C nodes deployed from the end of February 2019 to early May 2019 in the Changning-Zhaotong shale gas field.The magnitude of completeness(MC)using the dense array is-0.1,compared to MC 1.1 by the sparser Chinese Seismic Network(CSN).In addition,using a machine learning detection and picking procedure,we successfully identify and process some 14,000 earthquakes from the continuous waveforms,a ten-fold increase over the catalog recorded by CSN for the same period,and the MC is further reduced to-0.3 from-0.1 compared to the catalog obtained via manual processing using the same dense array.The proposed local magnitude formula can be adopted for calculating accurate local magnitudes of future earthquakes using dense arrays in the shale gas fields of the Sichuan Basin.This will help to better characterize the local seismic risks and potentials.展开更多
The eastern margin of the Tibetan Plateau is characterized by frequent earthquakes; however, research of paleo-earthquakes in the area has been limited^ owing to the alpine topography and strong erosion. Detailed inve...The eastern margin of the Tibetan Plateau is characterized by frequent earthquakes; however, research of paleo-earthquakes in the area has been limited^ owing to the alpine topography and strong erosion. Detailed investigations of soft-sediment deformation(SSD) structures are valuable for understanding the trigger mechanisms, deformation processes, and the magnitudes of earthquakes that generate such structures, and help us to understand tectonic activity in the region. To assess tectonic activity during the late Quaternary, we studied a well-exposed sequence of Shawan lacustrine sediments, 7.0 m thick, near Lake Diexi in the upper reaches of the Minjiang River. Deformation is recorded by both ductile structures(load casts, flame structures,pseudonodules, ball-and-pillow structures, and liquefied convolute structures) and brittle structures(liquefied breccia, and microfaults). Taking into account the geodynamic setting of the area and its known tectonic activity, these SSD structures can be interpreted in terms of seismic shocks. The types and forms of the structures,the maximum liquefaction distances, and the thicknesses of the horizons with SSD structures in the Shawan section indicate that they record six strong earthquakes of magnitude 6-7 and one with magnitude >7. A recent study showed that the Songpinggou fault is the seismogenic structure of the 1933 Ms7.5 Diexi earthquake. The Shawan section is located close to the junction of the Songpinggou and Minjiang faults, and records seven earthquakes with magnitudes of ?7. We infer,therefore, that the SSD structures in the Shawan section document deglacial activity along the Songpinggou fault.展开更多
This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional met...This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.展开更多
Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). Ther...Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). There are very few research works that focus on the magnitude e ects on such induced unbalance vibration. In this paper, a finite element model(FEM) is developed to characterize a realistic automotive TC rotor with floating ring bearings(FRBs). The nonlinear dynamic responses of the TC rotor system with di erent levels of induced unbalance magni?tude in compressor and turbine wheels are calculated. From the results of waterfall and response spectral intensity plots, the bifurcation and instability phenomena depend on unbalance magnitude during the startup of TC. The sub?synchronous component 0.12× caused rotor unstable is the dominant frequency for small induced unbalance. The nonlinear e ects of induced unbalance in the turbine wheel is obvious stronger than the compressor wheel. As the unbalance magnitude increases from 0.05 gbration 1·mm to 0.2 g·mm, the vibration component changes from mainly 0.12× to synchronous vi×. When unbalance increases continuously, the rotor vibration response amplitude is rapidly growing and the 1× caused by the large unbalance excitation becomes the dominant frequency. A suitable un?balance magnitude of turbine wheel and compressor wheel for the high?speed TC rotor with FRBs is proposed: the value of induced un?balance magnitude should be kept around 0.2 g·mm.展开更多
A class of stochastic differential equations with random jump magnitudes( SDEwRJMs) is investigated. Under nonLipschitz conditions,the convergence of semi-implicit Euler method for SDEwRJMs is studied. The main purpos...A class of stochastic differential equations with random jump magnitudes( SDEwRJMs) is investigated. Under nonLipschitz conditions,the convergence of semi-implicit Euler method for SDEwRJMs is studied. The main purpose is to prove that the semi-implicit Euler solutions converge to the true solutions in the mean-square sense. An example is given for illustration.展开更多
In this paper,characteristics of spatial and temporal variation of linear fitting goodness before some moderately strong earthquakes(Ms≥5.0)in the eastern part of China(east of longitude 180)are studied according to ...In this paper,characteristics of spatial and temporal variation of linear fitting goodness before some moderately strong earthquakes(Ms≥5.0)in the eastern part of China(east of longitude 180)are studied according to the famous Gutenberg-Richter’s relation expressed as lgN=a-bM,by using the moderate and small events that occurred in and around the source area.The results show that the linear goodness of fitting varies abnormally prior to these moderately strong earthquakes.In the early stage of the earthquake preparatory process,distribution of the energy released through small events in and around the source area is isostatic and the fitting goodness approximates 1,while the distribution of the energy turns to be isostatic before moderately strong earthquakes,leading to the obvious decrease of the linear goodness of fitting.This phenomenon could be a medium term anomaly and a medium term criterion for moderately strong earthquake prediction.展开更多
In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algor...In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algorithm was trained with 863 records of historical earthquakes, where the input regression parameters were an exponential function of the waveform envelope estimated by least squares and the maximum value of the observed waveform for each component in a single station. Ten-fold cross validation was applied for a normalized polynomial kernel obtaining the mean absolute error for different exponents and complexity parameters. The local magnitude(MI) could be estimated with 0.19 units of mean absolute error. The proposed algorithm is easy to implement in hardware and may be used directly after the field seismological sensor to generate fast decisions at seismological control centers, increasing the possibility of having an effective reaction.展开更多
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金the National Key R&D Program of China(No.2022YFF0800601)the National Natural Science Foundation of China(No.U1939204).
文摘Two large earthquakes(an earthquake doublet)occurred in south-central Turkey on February 6,2023,causing massive damages and casualties.The magnitudes and the relative sizes of the two mainshocks are essential information for scientific research and public awareness.There are obvious discrepancies among the results that have been reported so far,which may be revised and updated later.Here we applied a novel and reliable long-period coda moment magnitude method to the two large earthquakes.The moment magnitudes(with one standard error)are 7.95±0.013 and 7.86±0.012,respectively,which are larger than all the previous reports.The first mainshock,which matches the largest recorded earthquakes in the Turkish history,is slightly larger than the second one by 0.11±0.035 in magnitude or by 0.04 to 0.18 at 95%confidence level.
文摘The earthquake magnitude probability distribution is one of the underlying input data for certain earthquake analyses, such as probabilistic seismic hazard analysis. Nowadays, the method proposed by McGuire and Arabasz (1990) is commonly used for obtaining the (simulated) earthquake magnitude probability distributions. However, based on the observed earthquake data in 5 regions (Taiwan, Japan, California, Turkey, and Greece), the model did not fit the observation well. Instead, all of the case studies show that using the newly proposed gamma distribution can improve the simulation significantly compared to the conventional method.
基金Basic research program from Institute of Earthquake Science China Earthquake Administration (690206)Social Welfare Research Program from Ministry of Science and Technology of China (2005DIB3J119)
基金Joint Seismological Science Foundationof China (103034) and Major Research ″Research on Assessment of Seismic Safety″ from China Earthquake Administration during the tenth Five-year Plan.
文摘In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.
文摘Alcoholic liver disease(ALD) is a major cause of alcoholrelated morbidity and mortality.Its presentation ranges from fatty liver to alcoholic hepatitis(AH),cirrhosis,and hepatocellular carcinoma.Although the amount and pattern of alcohol consumption is a well recognized predisposing factor for the development of serious liver pathology,environmental factors and the host's genetic makeup may also play significant roles that have not yet been entirely explored.Continuing alcohol consumption is a major factor that influences the survival of patients with AH.The presence of cirrhosis at presentation or its development on follow up is a major factor determining the outcome in the long run.This chapter deals with the epidemiology and magnitude of ALD in general and AH in particular.
基金Joint Seismological Science Foundation of China (103034) and Major Research "Research on Assessment of Seismic Safety" from China Earthquake Administration during the tenth Five-year Plan.
文摘In recent years, some researchers have studied the paleoearthquake along the Haiyuan fault and revealed a lot of paleoearthquake events. All available information allows more reliable analysis of earthquake recurrence interval and earthquake rupture patterns along the Haiyuan fault. Based on this paleoseismological information, the recur- rence probability and magnitude distribution for M≥6.7 earthquakes in future 100 years along the Haiyuan fault can be obtained through weighted computation by using Poisson and Brownian passage time models and consid- ering different rupture patterns. The result shows that the recurrence probability of MS≥6.7 earthquakes is about 0.035 in future 100 years along the Haiyuan fault.
基金supported by The National Key Research and Development Program of China (Grant No. 2018YFC1505406)the National Natural Science Foundation of China (Grant Nos. 41502337, 41671112, 41661134012, 41501012)the China Geological Survey (Grant Nos. DD20160274, DD20190640)
文摘The magnitude-frequency(MF) relationship of debris flows is the basis for engineering designs and risk quantification. However, because of the lack of debris flow monitoring data, research progress in this area has been relatively slow. The MF relationship of debris flows in Jiangjia Gully, Yunnan Province was evaluated based on a regression analysis of 178 debris flow events that occurred from 1987-2004. The magnitude-cumulative frequency(MCF) relationship of the debris flows in the Jiangjia Gully is consistent with the linear logarithmic transformation function. Moreover, observed data for debris flows in Hunshui Gully of Yunnan Province and Huoshao Gully, Liuwan Gully, and Niwan Gully of Gansu Province were used to verify the function. The results showed that the MCF relationship of highfrequency debris flows is consistent with the power law equation, although the regression coefficients in the equation are considerably different. Further analysis showed a strong correlation between the differences in the constants and the drainage area and daily maximum precipitation.
文摘Magnitude and distance of major potential source are needed in order to determine duration time of artificial ground motion and to determine the type of response spectrum (near field or far field) when using the seismic intensity zonation map. The magnitude probabilistic distribution function of seismic belt and the magnitude and space joint distribution function for given intensity of the site in a potential Source are provided. Then the basicformula of calculating expected magnitude and expected distance are developed. Several examples for calculating expected magnitude and expected distance in northern China are discussed. These results show that expected magnitude and expected distance are related not only to geometry of potential source and magnitude but also to the intensity of the site with certain exceeding probability.
基金Ministry of Science and Technology of China(Grant No.2002DIB30076)China Seismological Bureau(Grant No.201009)
文摘Fault parameters are important in earthquake hazard analysis.In this paper,theoretical relationships between moment magnitude and fault parameters including subsurface rupture length,downdip rupture width,rupture area,and average slip over the fault surface are deduced based on seismological theory.These theoretical relationships are further simplified by applying similarity conditions and an unique form is established.Then,combining the simplified theoretical relationships between moment magnitude and fault parameters with seismic source data selected in this study,a practical semi-empirical relationship is established.The seismic source data selected is also to used to derive empirical relationships between moment magnitude and fault parameters by the ordinary least square regression method.Comparisons between semi-empirical relationships and empirical relationships show that the former depict distribution trends of data better than the latter.It is also observed that downdip rupture widths of strike slip faults are saturated when moment magnitude is more than 7.0,but downdip rupture widths of dip slip faults are not saturated in the molnent magnitude rangcs of this study.
基金the Monitoring Task of Department of Earthquake Monitoring and Prediction,China Earthquake Administration(2018)Technical Support and Effect Analysis of New Magnitude National Standard Implementation.
文摘In this paper,we give a brief introduction to the proposal and development history of the earthquake magnitude concept. Moment magnitude MWis the best physical quantity for measuring earthquakes. Compared with other magnitude scales used traditionally,moment magnitude is not saturated for all earthquakes,regardless of big and small earthquakes,deep and shallow earthquakes,far field and near field seismic data,geodetic and geological data,moment magnitude can be measured,and can be connected with wellknown magnitude scales such as surface wave magnitude MS. Moment magnitude is a uniform magnitude scale,which is suitable for statistics with wide magnitude range.Moment magnitude is the preferred magnitude selected by the International Seismological community,and it is preferred by the departments responsible for publishing seismic information to the public. Moment magnitude is a uniform magnitude scale,which is suitable for statistics with wide magnitude range. Moment magnitude is a preferred magnitude for international seismology,it is preferred by the agency responsible for providing information about earthquakes to the public. We provide all formulas used in the calculation of moment magnitude,and the calculation steps in detail. We also analyzed some problems and rules to solve these problems by using different formulas and numerical value calculation steps.
基金supported by the National Natural Science Foundation of China under grants 41874048 and 41974068supported by the National Key Research and Development Projects 2018YFC0603500。
文摘With the development of unconventional shale gas in the southern Sichuan Basin,seismicity in the region has increased significantly in recent years.Though the existing sparse regional seismic stations can capture most earthquakes with ML≥2.5,a great number of smaller earthquakes are often omitted due to limited detection capacity.With the advent of portable seismic nodes,many dense arrays for monitoring seismicity in the unconventional oil and gas fields have been deployed,and the magnitudes of those earthquakes are key to understand the local fault reactivation and seismic potentials.However,the current national standard for determining the local magnitudes was not specifically designed for monitoring stations in close proximity,utilizing a calibration function with a minimal resolution of 5 km in the epicentral distance.That is,the current national standard tends to overestimate the local magnitudes for stations within short epicentral distances,and can result in discrepancies for dense arrays.In this study,we propose a new local magnitude formula which corrects the overestimated magnitudes for shorter distances,yielding accurate event magnitudes for small earthquakes in the Changning-Zhaotong shale gas field in the southern Sichuan Basin,monitored by dense seismic arrays in close proximity.The formula is used to determine the local magnitudes of 7,500 events monitored by a two-phased dense array with several hundred 5 Hz 3 C nodes deployed from the end of February 2019 to early May 2019 in the Changning-Zhaotong shale gas field.The magnitude of completeness(MC)using the dense array is-0.1,compared to MC 1.1 by the sparser Chinese Seismic Network(CSN).In addition,using a machine learning detection and picking procedure,we successfully identify and process some 14,000 earthquakes from the continuous waveforms,a ten-fold increase over the catalog recorded by CSN for the same period,and the MC is further reduced to-0.3 from-0.1 compared to the catalog obtained via manual processing using the same dense array.The proposed local magnitude formula can be adopted for calculating accurate local magnitudes of future earthquakes using dense arrays in the shale gas fields of the Sichuan Basin.This will help to better characterize the local seismic risks and potentials.
基金the joint support by the National Natural Science Foundation of China(41807298,41672211,41572346)the Special Project of Fundamental Scientific Research of the Institute of Geology,China Earthquake Administration(IGCEA1713)
文摘The eastern margin of the Tibetan Plateau is characterized by frequent earthquakes; however, research of paleo-earthquakes in the area has been limited^ owing to the alpine topography and strong erosion. Detailed investigations of soft-sediment deformation(SSD) structures are valuable for understanding the trigger mechanisms, deformation processes, and the magnitudes of earthquakes that generate such structures, and help us to understand tectonic activity in the region. To assess tectonic activity during the late Quaternary, we studied a well-exposed sequence of Shawan lacustrine sediments, 7.0 m thick, near Lake Diexi in the upper reaches of the Minjiang River. Deformation is recorded by both ductile structures(load casts, flame structures,pseudonodules, ball-and-pillow structures, and liquefied convolute structures) and brittle structures(liquefied breccia, and microfaults). Taking into account the geodynamic setting of the area and its known tectonic activity, these SSD structures can be interpreted in terms of seismic shocks. The types and forms of the structures,the maximum liquefaction distances, and the thicknesses of the horizons with SSD structures in the Shawan section indicate that they record six strong earthquakes of magnitude 6-7 and one with magnitude >7. A recent study showed that the Songpinggou fault is the seismogenic structure of the 1933 Ms7.5 Diexi earthquake. The Shawan section is located close to the junction of the Songpinggou and Minjiang faults, and records seven earthquakes with magnitudes of ?7. We infer,therefore, that the SSD structures in the Shawan section document deglacial activity along the Songpinggou fault.
基金National Natural Science Foundation under Grant No.51574201Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)under Grant No.SKLGP2016K017+2 种基金Open Research Fund by Sichuan Engineering Research Center for Emergency Mapping&Disaster Reduction under Grant No.K2015B008The State Administration of Work Safety under Grant No.2014_3335Soft Science Research Projects in Sichuan Province under Grant No.2015zr0049
文摘This study explores the quasi-real time inversion principle and precision estimation of three-dimensional coordinates of the epicenter, trigger time and magnitude of earthquakes with the aim to improve traditional methods, which are flawed due to missing information or distortion in the seismograph records. The epicenter, trigger time and magnitude from the Lushan earthquake are inverted and analyzed based on high-frequency GNSS data. The inversion results achieved a high precision, which are consistent with the data published by the China Earthquake Administration. Moreover, it has been proven that the inversion method has good theoretical value and excellent application prospects.
基金National Natural Science Foundation of China(Grant Nos.51575176,11672106,51775030,51875196)Youth Innovative Talents of Hunan Province of China(Grant No.2015RS4043)
文摘Due to operational wear and uneven carbon absorption in compressor and turbine wheels, the unbalance(me) vibration is induced and could lead to sub?synchronous vibration accidents for high?speed turbocharger(TC). There are very few research works that focus on the magnitude e ects on such induced unbalance vibration. In this paper, a finite element model(FEM) is developed to characterize a realistic automotive TC rotor with floating ring bearings(FRBs). The nonlinear dynamic responses of the TC rotor system with di erent levels of induced unbalance magni?tude in compressor and turbine wheels are calculated. From the results of waterfall and response spectral intensity plots, the bifurcation and instability phenomena depend on unbalance magnitude during the startup of TC. The sub?synchronous component 0.12× caused rotor unstable is the dominant frequency for small induced unbalance. The nonlinear e ects of induced unbalance in the turbine wheel is obvious stronger than the compressor wheel. As the unbalance magnitude increases from 0.05 gbration 1·mm to 0.2 g·mm, the vibration component changes from mainly 0.12× to synchronous vi×. When unbalance increases continuously, the rotor vibration response amplitude is rapidly growing and the 1× caused by the large unbalance excitation becomes the dominant frequency. A suitable un?balance magnitude of turbine wheel and compressor wheel for the high?speed TC rotor with FRBs is proposed: the value of induced un?balance magnitude should be kept around 0.2 g·mm.
基金National Natural Science Foundations of China(Nos.11401261,11471071)Qing Lan Project of Jiangsu Province,China(No.2012)+2 种基金Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.13KJB110005)the Grant of Jiangsu Second Normal University(No.JSNU-ZY-02)the Jiangsu Government Overseas Study Scholarship,China
文摘A class of stochastic differential equations with random jump magnitudes( SDEwRJMs) is investigated. Under nonLipschitz conditions,the convergence of semi-implicit Euler method for SDEwRJMs is studied. The main purpose is to prove that the semi-implicit Euler solutions converge to the true solutions in the mean-square sense. An example is given for illustration.
文摘In this paper,characteristics of spatial and temporal variation of linear fitting goodness before some moderately strong earthquakes(Ms≥5.0)in the eastern part of China(east of longitude 180)are studied according to the famous Gutenberg-Richter’s relation expressed as lgN=a-bM,by using the moderate and small events that occurred in and around the source area.The results show that the linear goodness of fitting varies abnormally prior to these moderately strong earthquakes.In the early stage of the earthquake preparatory process,distribution of the energy released through small events in and around the source area is isostatic and the fitting goodness approximates 1,while the distribution of the energy turns to be isostatic before moderately strong earthquakes,leading to the obvious decrease of the linear goodness of fitting.This phenomenon could be a medium term anomaly and a medium term criterion for moderately strong earthquake prediction.
文摘In this work a Support Vector Machine Regression(SVMR) algorithm is used to calculate local magnitude(MI) using only five seconds of signal after the P wave onset of one three component seismic station. This algorithm was trained with 863 records of historical earthquakes, where the input regression parameters were an exponential function of the waveform envelope estimated by least squares and the maximum value of the observed waveform for each component in a single station. Ten-fold cross validation was applied for a normalized polynomial kernel obtaining the mean absolute error for different exponents and complexity parameters. The local magnitude(MI) could be estimated with 0.19 units of mean absolute error. The proposed algorithm is easy to implement in hardware and may be used directly after the field seismological sensor to generate fast decisions at seismological control centers, increasing the possibility of having an effective reaction.