We examined the spatial variation of velocity structures around the 660-kin discontinuity at the western Pacific subduction zones by waveform modeling of triplication data. Data from two deep earthquakes beneath Izu-B...We examined the spatial variation of velocity structures around the 660-kin discontinuity at the western Pacific subduction zones by waveform modeling of triplication data. Data from two deep earthquakes beneath Izu-Bonin and Northeast China are used. Both events were well recorded by a dense broadband seismic network in China (CEArray). The two events are located at approximately the same distance to the CEArray, yet significant differences are observed in their records: (1) the direct arrivals traveling above the 660-km discontinuity (AB branch) are seen in a different distance extent: -29° for the NE China event, -23° for Izu-Bonin event; (2) the direct (AB) and the refracted waves at the 660-km (CD branch) cross over at 19.5° and 17° for the NE China and the Izu-Bonin event, respectively. The best fitting model for the NE China event has a broad 660-km discontinuity and a constant high velocity layer upon it; while the Izu-Bonin model differs from the standard IASP91 model only with a high velocity layer above the 660-km discontinuity. Variations in velocity models can be roughly explained by subduction geometry.展开更多
Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the...Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the velocity structure across the 660-km discontinuity that separates the upper mantle from the lower mantle beneath the Sea of Okhotsk by modeling the waveform of the S660P phase,a downgoing S wave converting into a P wave at the 660-km interface.These waves were excited by two regional>410-km-deep events and were recorded by stations in central Asia.Our findings showed no need to introduce velocity anomalies at the base of the MTZ to explain the S660P waveforms because the IASP91 model adequately reproduced the waveforms.This finding indicates that the basalt accumulation has not affected the bottom of the MTZ in the study area.Instead,this discontinuity is primarily controlled by temperature or water content variations,or both.Thus,we argue that the basalt accumulation at the base of the MTZ is sporadic,not ubiquitous,reflecting its heterogeneous distribution.展开更多
A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-...A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity(Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion. The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp–Vs ratio than the method of inverting S–P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern(NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source–receiver pairs. The inverted structures suggest that the subducting slab of the Pacific plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.展开更多
The studies on the structure and physical properties of the Earths interior done by Chinese geophysicists from 1999 to 2002 were reviewed in this paper. It includes several research areas: the structure of the Earths ...The studies on the structure and physical properties of the Earths interior done by Chinese geophysicists from 1999 to 2002 were reviewed in this paper. It includes several research areas: the structure of the Earths interiors using seismic tomography, anisotropy of the upper mantle in China and its adjacent areas, quality factor Qb for S waves, subduction zone, mantle discontinuities, physical properties of Earths materials and others. The review concerns mainly the contents, the methods and the results of the studies. It can be seen that new progress in the study on the structure and physical properties of the Earths interior has been made in the last 4 years in China. It is shown on three aspects: advancement made on some preexistent areas; pioneering on some new fields and new methods adopted.展开更多
基金supported by National Natural Science Foundation of China under grant 40874095 and NSF under grant EAR-063566
文摘We examined the spatial variation of velocity structures around the 660-kin discontinuity at the western Pacific subduction zones by waveform modeling of triplication data. Data from two deep earthquakes beneath Izu-Bonin and Northeast China are used. Both events were well recorded by a dense broadband seismic network in China (CEArray). The two events are located at approximately the same distance to the CEArray, yet significant differences are observed in their records: (1) the direct arrivals traveling above the 660-km discontinuity (AB branch) are seen in a different distance extent: -29° for the NE China event, -23° for Izu-Bonin event; (2) the direct (AB) and the refracted waves at the 660-km (CD branch) cross over at 19.5° and 17° for the NE China and the Izu-Bonin event, respectively. The best fitting model for the NE China event has a broad 660-km discontinuity and a constant high velocity layer upon it; while the Izu-Bonin model differs from the standard IASP91 model only with a high velocity layer above the 660-km discontinuity. Variations in velocity models can be roughly explained by subduction geometry.
基金support from the National Natural Science Foundation of China(Grant No.42276049)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42020103).
文摘Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone(MTZ),yet its ubiquity or sporadic nature remains uncertain.To investigate this phenomenon further,we characterized the velocity structure across the 660-km discontinuity that separates the upper mantle from the lower mantle beneath the Sea of Okhotsk by modeling the waveform of the S660P phase,a downgoing S wave converting into a P wave at the 660-km interface.These waves were excited by two regional>410-km-deep events and were recorded by stations in central Asia.Our findings showed no need to introduce velocity anomalies at the base of the MTZ to explain the S660P waveforms because the IASP91 model adequately reproduced the waveforms.This finding indicates that the basalt accumulation has not affected the bottom of the MTZ in the study area.Instead,this discontinuity is primarily controlled by temperature or water content variations,or both.Thus,we argue that the basalt accumulation at the base of the MTZ is sporadic,not ubiquitous,reflecting its heterogeneous distribution.
基金sponsored by the One Hundred Person Project of the Chinese Academy of Sciences(No.17314059)the Natural ScienceFoundation of China(No.41372229)+1 种基金the Sichuan Province Outstanding Youth Foundation(Nos.2010JQ0033,KYTD201002)theOpening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection as well as the Research Foundation fothe Doctoral Program of Higher Education of China(Nos.20115122110007,20125122110002)
文摘A new inversion scheme is presented to obtain three-dimensional images of P-wave velocity(Vp) and P–S-wave velocity ratio(Vp/Vs) using P- and S-phase pairs, i.e., the same source–receiver pairs for the P- and S-wave arrival-time data. The S-wave velocity(Vs) was separately inverted using the S-phase arrival times. The earthquake hypocenters were simultaneously relocated in the joint inversion. The method considers the Vp/Vs anomaly as a model parameter in the inversion. The proposed method thus provides a more robust calculation of the Vp/Vs anomaly than the conventional method of dividing Vp by Vs. The method also takes into account the ray path difference between P- and S-waves, and hence yields a less biased Vp–Vs ratio than the method of inverting S–P-wave data for Vp and Vp/Vs anomalies under the assumption of identical P and S ray paths. The proposed method was used to image the crust and upper mantle in northeastern(NE) Japan taking advantage of a large number of high-quality arrival times of P- and S-wave source–receiver pairs. The inverted structures suggest that the subducting slab of the Pacific plate is an inclined zone of high-Vp and Vs anomalies with low Vp/Vs perturbation. The mantle wedge is characterized by low-Vp, low-Vs, and high-Vp/Vs anomalies at shallow depths beneath active volcanoes. These features are also observed at greater depths in the back-arc region. Although these features have been previously reported, the Vp/Vs anomaly pattern obtained in this study shows much less scatter and is much better correlated with the seismic velocity perturbation patterns than previous studies. The proposed method can be used, in conjunction with velocity anomaly patterns, to quantify thermal processes associated with plate subduction.
基金State Natural Science Foundation of China (40174023).
文摘The studies on the structure and physical properties of the Earths interior done by Chinese geophysicists from 1999 to 2002 were reviewed in this paper. It includes several research areas: the structure of the Earths interiors using seismic tomography, anisotropy of the upper mantle in China and its adjacent areas, quality factor Qb for S waves, subduction zone, mantle discontinuities, physical properties of Earths materials and others. The review concerns mainly the contents, the methods and the results of the studies. It can be seen that new progress in the study on the structure and physical properties of the Earths interior has been made in the last 4 years in China. It is shown on three aspects: advancement made on some preexistent areas; pioneering on some new fields and new methods adopted.