We obtain the Omori-Yau maximum principle on complete properly immersed submanifolds with the mean curvature satisfying certain condition in complete Riemannian manifolds whose radial sectional curvature satisfies som...We obtain the Omori-Yau maximum principle on complete properly immersed submanifolds with the mean curvature satisfying certain condition in complete Riemannian manifolds whose radial sectional curvature satisfies some decay condition, which generalizes our previous results in [17]. Using this generalized maximum principle, we give an estimate on the mean curvature of properly immersed submanifolds in H^n × R^e with the image under the projection on H^n contained in a horoball and the corresponding situation in hyperbolic space. We also give other applications of the generalized maximum principle.展开更多
基金partially supported by the National Natural Science Foundation of China(11126189,11171259)Specialized Research Fund for the Doctoral Program of Higher Education(20120141120058)+1 种基金China Postdoctoral Science Foundation Funded Project(20110491212)the Fundamental Research Funds for the Central Universities(2042011111054)
文摘We obtain the Omori-Yau maximum principle on complete properly immersed submanifolds with the mean curvature satisfying certain condition in complete Riemannian manifolds whose radial sectional curvature satisfies some decay condition, which generalizes our previous results in [17]. Using this generalized maximum principle, we give an estimate on the mean curvature of properly immersed submanifolds in H^n × R^e with the image under the projection on H^n contained in a horoball and the corresponding situation in hyperbolic space. We also give other applications of the generalized maximum principle.