Location prediction in social media,a growing research field,employs machine learning to identify users' locations from their online activities.This technology,useful in targeted advertising and urban planning,rel...Location prediction in social media,a growing research field,employs machine learning to identify users' locations from their online activities.This technology,useful in targeted advertising and urban planning,relies on natural language processing to analyze social media content and understand the temporal dynamics and structures of social networks.A key application is predicting a Twitter user's location from their tweets,which can be challenging due to the short and unstructured nature of tweet text.To address this challenge,the research introduces a novel machine learning model called the location-aware attention LSTM(LAA-LSTM).This hybrid model combines a Long Short-Term Memory(LSTM) network with an attention mechanism.The LSTM is trained on a dataset of tweets,and the attention network focuses on extracting features related to latitude and longitude,which are crucial for pinpointing the location of a user's tweet.The result analysis shows approx.10% improvement in accuracy over other existing machine learning approaches.展开更多
F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM...F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F_(10.7)预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为5.38,平均绝对百分比误差(MAPE)控制在5%以内,相关系数(R)高达0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F_(10.7)数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F_(10.7)指数方面具有较好的优势,表现出较好的预测性能和稳定性.展开更多
Fusarium head blight (FHB) is one of the most destructive diseases in global wheat production. In order to count the FHB-infected wheat ears under field conditions, this study proposed an algorithm for diseased wheat ...Fusarium head blight (FHB) is one of the most destructive diseases in global wheat production. In order to count the FHB-infected wheat ears under field conditions, this study proposed an algorithm for diseased wheat ear detection based on improved YOLOv5s (Tr-YOLOv5s). The Swin Transformer was used to replace the CSPDarknet backbone network to enhance the extraction of characteristic information of the population wheat ears of FHB in the field background. The convolutional block attention module (CBAM) attention mechanism was added to improve the detection effect of target wheat ears, subsequently improving the overall accuracy of the model. The original loss function complete intersection over union (CIoU) was replaced by Scylla intersection over union (SIoU) loss to accelerate the model convergence and decrease the loss value. The results showed that the mean average precision (mAP) of the Tr-YOLOv5s model reached 90.64%, making a 4.63% improvement compared to the original YOLOv5s model. The improved model could quickly detect and count wheat FHB ear in the field environment, which laid a foundation for the subsequent automatic disease identification and grading of wheat FHB under field conditions.展开更多
Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clin...Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD.展开更多
The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when co...The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s.展开更多
In recent years,target detection of aerial images of unmannedaerial vehicle(UAV)has become one of the hottest topics.However,targetdetection of UAV aerial images often presents false detection and misseddetection.We p...In recent years,target detection of aerial images of unmannedaerial vehicle(UAV)has become one of the hottest topics.However,targetdetection of UAV aerial images often presents false detection and misseddetection.We proposed a modified you only look once(YOLO)model toimprove the problems arising in object detection in UAV aerial images:(1)A new residual structure is designed to improve the ability to extract featuresby enhancing the fusion of the inner features of the single layer.At the sametime,triplet attention module is added to strengthen the connection betweenspace and channel and better retain important feature information.(2)Thefeature information is enriched by improving the multi-scale feature pyramidstructure and strengthening the feature fusion at different scales.(3)A newloss function is created and the diagonal penalty term of the anchor frame isintroduced to improve the speed of training and the accuracy of reasoning.The proposed model is called residual feature fusion triple attention YOLO(RT-YOLO).Experiments showed that the mean average precision(mAP)ofRT-YOLO is increased from 57.2%to 60.8%on the vehicle detection in aerialimage(VEDAI)dataset,and the mAP is also increased by 1.7%on the remotesensing object detection(RSOD)dataset.The results show that theRT-YOLOoutperforms other mainstream models in UAV aerial image object detection.展开更多
Neurodegeneration is the gradual deterioration and eventual death of brain cells,leading to progressive loss of structure and function of neurons in the brain and nervous system.Neurodegenerative disorders,such as Alz...Neurodegeneration is the gradual deterioration and eventual death of brain cells,leading to progressive loss of structure and function of neurons in the brain and nervous system.Neurodegenerative disorders,such as Alzheimer’s,Huntington’s,Parkinson’s,amyotrophic lateral sclerosis,multiple system atrophy,and multiple sclerosis,are characterized by progressive deterioration of brain function,resulting in symptoms such as memory impairment,movement difficulties,and cognitive decline.Early diagnosis of these conditions is crucial to slowing down cell degeneration and reducing the severity of the diseases.Magnetic resonance imaging(MRI)is widely used by neurologists for diagnosing brain abnormalities.The majority of the research in this field focuses on processing the 2D images extracted from the 3D MRI volumetric scans for disease diagnosis.This might result in losing the volumetric information obtained from the whole brain MRI.To address this problem,a novel 3D-CNN architecture with an attention mechanism is proposed to classify whole-brain MRI images for Alzheimer’s disease(AD)detection.The 3D-CNN model uses channel and spatial attention mechanisms to extract relevant features and improve accuracy in identifying brain dysfunctions by focusing on specific regions of the brain.The pipeline takes pre-processed MRI volumetric scans as input,and the 3D-CNN model leverages both channel and spatial attention mechanisms to extract precise feature representations of the input MRI volume for accurate classification.The present study utilizes the publicly available Alzheimer’s disease Neuroimaging Initiative(ADNI)dataset,which has three image classes:Mild Cognitive Impairment(MCI),Cognitive Normal(CN),and AD affected.The proposed approach achieves an overall accuracy of 79%when classifying three classes and an average accuracy of 87%when identifying AD and the other two classes.The findings reveal that 3D-CNN models with an attention mechanism exhibit significantly higher classification performance compared to other models,highlighting the potential of deep learning algorithms to aid in the early detection and prediction of AD.展开更多
Television as one of the popular culture media plays an important role in the development of students' personality and knowledge because it provides countless information and entertainment that can enhance their know...Television as one of the popular culture media plays an important role in the development of students' personality and knowledge because it provides countless information and entertainment that can enhance their knowledge as the viewers. This study was conducted to give an idea whether television viewing and parental attention can assist students to take a decision of choosing major at the senior high school. This study used descriptive method which analyzed the correlation among television viewing, parental attention, and the students' motivation to choose a major. The sample of this study consisted of 100 students of the state senior high school in Malang, East Java. The finding shows that there is no correlation among television viewing, parental attention, and the students' motivation to choose major at the senior high school. In other words, the possibility of choosing the major can be attributed to some other factors such as interest, talent, aspiration, and other expectation to achieve their goals展开更多
With the rapid development of Internet media,Internet media coverage has more or less influence on investors'psychological level.This article uses Python technology to climb 2019.9 to 2020.1 of the monthly news re...With the rapid development of Internet media,Internet media coverage has more or less influence on investors'psychological level.This article uses Python technology to climb 2019.9 to 2020.1 of the monthly news reports on A share listed companies in the Snowball net,and studies the relationship between media attention and investors'heterogeneous beliefs.It is found that media attention is positively correlated with investors'heterogeneous beliefs,that is,investors are more likely to choose stocks frequently reported by media.Further research finds that media reports will strengthen investors'heterogeneous beliefs,affect investors'investment behavior,and ultimately lead to the increase of stock trading volume.展开更多
文摘Location prediction in social media,a growing research field,employs machine learning to identify users' locations from their online activities.This technology,useful in targeted advertising and urban planning,relies on natural language processing to analyze social media content and understand the temporal dynamics and structures of social networks.A key application is predicting a Twitter user's location from their tweets,which can be challenging due to the short and unstructured nature of tweet text.To address this challenge,the research introduces a novel machine learning model called the location-aware attention LSTM(LAA-LSTM).This hybrid model combines a Long Short-Term Memory(LSTM) network with an attention mechanism.The LSTM is trained on a dataset of tweets,and the attention network focuses on extracting features related to latitude and longitude,which are crucial for pinpointing the location of a user's tweet.The result analysis shows approx.10% improvement in accuracy over other existing machine learning approaches.
文摘F_(10.7)指数是太阳活动的重要指标,准确预测F_(10.7)指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F_(10.7)射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F_(10.7)预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为5.38,平均绝对百分比误差(MAPE)控制在5%以内,相关系数(R)高达0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F_(10.7)数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F_(10.7)指数方面具有较好的优势,表现出较好的预测性能和稳定性.
基金Bai for their strong support for this work. This study was supported by the Natural Science Foundation of Henan Province (NO. 222301420113, 232102520006)Major Science and Technology Special Project of Henan Province (NO. 221100210600)+2 种基金Henan Province key research and development project (NO. 231111110100)Key Scientific and Technological Project of Henan Province (NO. 242102111193)the Natural Science Foundation of China(NO. 31501225, 42101362).
文摘Fusarium head blight (FHB) is one of the most destructive diseases in global wheat production. In order to count the FHB-infected wheat ears under field conditions, this study proposed an algorithm for diseased wheat ear detection based on improved YOLOv5s (Tr-YOLOv5s). The Swin Transformer was used to replace the CSPDarknet backbone network to enhance the extraction of characteristic information of the population wheat ears of FHB in the field background. The convolutional block attention module (CBAM) attention mechanism was added to improve the detection effect of target wheat ears, subsequently improving the overall accuracy of the model. The original loss function complete intersection over union (CIoU) was replaced by Scylla intersection over union (SIoU) loss to accelerate the model convergence and decrease the loss value. The results showed that the mean average precision (mAP) of the Tr-YOLOv5s model reached 90.64%, making a 4.63% improvement compared to the original YOLOv5s model. The improved model could quickly detect and count wheat FHB ear in the field environment, which laid a foundation for the subsequent automatic disease identification and grading of wheat FHB under field conditions.
基金funded by the National Natural Science Foundation of China(No.62076044)Scientific Research Foundation of Chongqing University of Technology(No.2020ZDZ015).
文摘Alzheimer’s disease(AD)is a complex,progressive neurodegenerative disorder.The subtle and insidious onset of its pathogenesis makes early detection of a formidable challenge in both contemporary neuroscience and clinical practice.In this study,we introduce an advanced diagnostic methodology rooted in theMed-3D transfermodel and enhanced with an attention mechanism.We aim to improve the precision of AD diagnosis and facilitate its early identification.Initially,we employ a spatial normalization technique to address challenges like clarity degradation and unsaturation,which are commonly observed in imaging datasets.Subsequently,an attention mechanism is incorporated to selectively focus on the salient features within the imaging data.Building upon this foundation,we present the novelMed-3D transfermodel,designed to further elucidate and amplify the intricate features associated withADpathogenesis.Our proposedmodel has demonstrated promising results,achieving a classification accuracy of 92%.To emphasize the robustness and practicality of our approach,we introduce an adaptive‘hot-updating’auxiliary diagnostic system.This system not only enables continuous model training and optimization but also provides a dynamic platform to meet the real-time diagnostic and therapeutic demands of AD.
基金Institutional Fund Projects under Grant No.(IFPIP:638-830-1443).
文摘The utilization of visual attention enhances the performance of image classification tasks.Previous attentionbased models have demonstrated notable performance,but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences.Neural-Controlled Differential Equations(N-CDE’s)and Neural Ordinary Differential Equations(NODE’s)are extensively utilized within this context.NCDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity.To this end,an attentive neural network has been proposed to generate attention maps,which uses two different types of N-CDE’s,one for adopting hidden layers and the other to generate attention values.Two distinct attention techniques are implemented including time-wise attention,also referred to as bottom N-CDE’s;and element-wise attention,called topN-CDE’s.Additionally,a trainingmethodology is proposed to guarantee that the training problem is sufficiently presented.Two classification tasks including fine-grained visual classification andmulti-label classification,are utilized to evaluate the proposedmodel.The proposedmethodology is employed on five publicly available datasets,including CUB-200-2011,ImageNet-1K,PASCAL VOC 2007,PASCAL VOC 2012,and MS COCO.The obtained visualizations have demonstrated that N-CDE’s are better appropriate for attention-based activities in comparison to conventional NODE’s.
基金supported in part by the Scientific Research Project of Hunan Provincial Department of Education under Grant 18A332 and 19A066,authors HW.D and Z.C,http://kxjsc.gov.hnedu.cn/in part by the Science and Technology Plan Project of Hunan Province under Grant 2016TP1020,author HW.D,http://kjt.hunan.gov.cn/.
文摘In recent years,target detection of aerial images of unmannedaerial vehicle(UAV)has become one of the hottest topics.However,targetdetection of UAV aerial images often presents false detection and misseddetection.We proposed a modified you only look once(YOLO)model toimprove the problems arising in object detection in UAV aerial images:(1)A new residual structure is designed to improve the ability to extract featuresby enhancing the fusion of the inner features of the single layer.At the sametime,triplet attention module is added to strengthen the connection betweenspace and channel and better retain important feature information.(2)Thefeature information is enriched by improving the multi-scale feature pyramidstructure and strengthening the feature fusion at different scales.(3)A newloss function is created and the diagonal penalty term of the anchor frame isintroduced to improve the speed of training and the accuracy of reasoning.The proposed model is called residual feature fusion triple attention YOLO(RT-YOLO).Experiments showed that the mean average precision(mAP)ofRT-YOLO is increased from 57.2%to 60.8%on the vehicle detection in aerialimage(VEDAI)dataset,and the mAP is also increased by 1.7%on the remotesensing object detection(RSOD)dataset.The results show that theRT-YOLOoutperforms other mainstream models in UAV aerial image object detection.
文摘Neurodegeneration is the gradual deterioration and eventual death of brain cells,leading to progressive loss of structure and function of neurons in the brain and nervous system.Neurodegenerative disorders,such as Alzheimer’s,Huntington’s,Parkinson’s,amyotrophic lateral sclerosis,multiple system atrophy,and multiple sclerosis,are characterized by progressive deterioration of brain function,resulting in symptoms such as memory impairment,movement difficulties,and cognitive decline.Early diagnosis of these conditions is crucial to slowing down cell degeneration and reducing the severity of the diseases.Magnetic resonance imaging(MRI)is widely used by neurologists for diagnosing brain abnormalities.The majority of the research in this field focuses on processing the 2D images extracted from the 3D MRI volumetric scans for disease diagnosis.This might result in losing the volumetric information obtained from the whole brain MRI.To address this problem,a novel 3D-CNN architecture with an attention mechanism is proposed to classify whole-brain MRI images for Alzheimer’s disease(AD)detection.The 3D-CNN model uses channel and spatial attention mechanisms to extract relevant features and improve accuracy in identifying brain dysfunctions by focusing on specific regions of the brain.The pipeline takes pre-processed MRI volumetric scans as input,and the 3D-CNN model leverages both channel and spatial attention mechanisms to extract precise feature representations of the input MRI volume for accurate classification.The present study utilizes the publicly available Alzheimer’s disease Neuroimaging Initiative(ADNI)dataset,which has three image classes:Mild Cognitive Impairment(MCI),Cognitive Normal(CN),and AD affected.The proposed approach achieves an overall accuracy of 79%when classifying three classes and an average accuracy of 87%when identifying AD and the other two classes.The findings reveal that 3D-CNN models with an attention mechanism exhibit significantly higher classification performance compared to other models,highlighting the potential of deep learning algorithms to aid in the early detection and prediction of AD.
文摘Television as one of the popular culture media plays an important role in the development of students' personality and knowledge because it provides countless information and entertainment that can enhance their knowledge as the viewers. This study was conducted to give an idea whether television viewing and parental attention can assist students to take a decision of choosing major at the senior high school. This study used descriptive method which analyzed the correlation among television viewing, parental attention, and the students' motivation to choose a major. The sample of this study consisted of 100 students of the state senior high school in Malang, East Java. The finding shows that there is no correlation among television viewing, parental attention, and the students' motivation to choose major at the senior high school. In other words, the possibility of choosing the major can be attributed to some other factors such as interest, talent, aspiration, and other expectation to achieve their goals
文摘With the rapid development of Internet media,Internet media coverage has more or less influence on investors'psychological level.This article uses Python technology to climb 2019.9 to 2020.1 of the monthly news reports on A share listed companies in the Snowball net,and studies the relationship between media attention and investors'heterogeneous beliefs.It is found that media attention is positively correlated with investors'heterogeneous beliefs,that is,investors are more likely to choose stocks frequently reported by media.Further research finds that media reports will strengthen investors'heterogeneous beliefs,affect investors'investment behavior,and ultimately lead to the increase of stock trading volume.