The non-isothermal heating process of Mg-Sn powder mixture was studied by differential scanning calorimetry(DSC) technique and the synthesis kinetics of Mg2Sn was evaluated by the model-free and model-fitting methods....The non-isothermal heating process of Mg-Sn powder mixture was studied by differential scanning calorimetry(DSC) technique and the synthesis kinetics of Mg2Sn was evaluated by the model-free and model-fitting methods.The activation energy and conversion function of Mg2Sn synthesis reaction are calculated to be 281.7 kJ/mol and g(α)=[-ln(1-α)] 1/4,respectively.The reaction mechanism of 2Mg+Sn→Mg2Sn under non-isothermal condition is regarded as "nucleation and growth" .During the non-isothermal heating process,the phase transformation occurred in the Mg-Sn powder mixture was analyzed by XRD and the microstructure evolution of Mg2Sn was observed by optical microscopy,which is in good agreement with the reaction mechanism of 2Mg+Sn→ Mg2Sn deduced from the kinetic evaluation.展开更多
In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate condit...In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate conditions.The kinetic calculation of RDX thermal decomposition curve was carried out by Kissinger and Ozawa methods,respectively,and the thermal analysis software was used to calculate the parameters such as self-accelerating decomposition temperature.The results show that the initial decomposition temperature range,decomposition peak temperature range,and decomposition completion temperature range of RDX are 208.4-214.2,225.7-239.3 and 234.0-252.4℃,respectively,and the average decomposition enthalpy is 362.9 J·g^-1.Kissinger method was used to calculate the DSC experimental data of RDX,the apparent activation energy obtained is 190.8 kJ·mol^-1,which is coincident with the results calculated by Ozawa method at the end of the reaction,indicating that the apparent activation energy calculated by the two methods is relatively accurate.When the packaging mass values are 1.0,2.0 and 5.0 kg,respectively,the self-accelerating decomposition temperatures are 97.0,93.0 and 87.0℃,respectively,indicating that with the increase of packaging mass,the self-accelerating decomposition temperature gradually decreases,and the risk increases accordingly.展开更多
The differential scanning calorimetric (DSC)curves of the mitochondria isolated from two varieties of sporophyte cytoplasmic male sterile and their fertile lines of Yie Bai and Ma Xie type rice have been determined. T...The differential scanning calorimetric (DSC)curves of the mitochondria isolated from two varieties of sporophyte cytoplasmic male sterile and their fertile lines of Yie Bai and Ma Xie type rice have been determined. The curves show that the energy is released continuously as temperature rise to 70℃. Some thermodynamic and kinetic parameters of the energy release of the mitochondria have been obtained. The presented results showed that the mitochondria from cytoplasmic male sterile rice released more heat and they had higher energy barrier, less rate, and more complicated mechanism than that of their fertile lines in the energy release process.展开更多
Nanocomposites were fabricated by using a commercial two part epoxy as a matrix and multiwalled carbon nanotubes, graphite fibers and boron nitride platelets as filler materials. Multiwalled carbon nanotubes (MWCNTs) ...Nanocomposites were fabricated by using a commercial two part epoxy as a matrix and multiwalled carbon nanotubes, graphite fibers and boron nitride platelets as filler materials. Multiwalled carbon nanotubes (MWCNTs) that were produced by chemical vapor deposition were found to produce nanocomposites with better thermal diffusivity and thermal conductivity than the MWCNTs that were produced by the combustion method. Compared to the MWCNTs produced by both methods and graphite fibers, boron nitride produced nanocomposites with the highest thermal conductivity. Specific heat capacity was measured by using differential scanning calorimetry and thermal diffusivity was measured by using the laser flash.展开更多
Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made ...Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.展开更多
Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities o...Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities of supersaturated solid solution (SSS) of Zn-Al alloy and α' phase formed by quenching would reduce with the increase of Zn content and the precipitation of η-Zn phases even when aging at ambient temperature, so that the exothermic precipitation peak in DSC curve would disappear. The activation energy of the η-Zn precipitation and the reaction enthalpy were calculated and measured. The kinetics of α' decomposition or η-Zn formation was determined by XRD. The microstructure change during aging was observed by TEM.展开更多
Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during...Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.展开更多
In this paper the measurement of crystallinity(C)ofacrylic copolymer(PAC),by Swelling Differential Scan-ning Calorimetry(SDSC)is discussed.Common DSC isonly used for measuring the crystallinity of polymers withmelting...In this paper the measurement of crystallinity(C)ofacrylic copolymer(PAC),by Swelling Differential Scan-ning Calorimetry(SDSC)is discussed.Common DSC isonly used for measuring the crystallinity of polymers withmelting point,(T_m),below their decomposition temper-ature,(T_d).As temperature rises,polymers with swell-ing agent added become swollen and dissolved,goingthrough whole process of breaking solid structures.Thus,SDSC makes it possible to measure the crystallini-ty of polymers even with T_d below T_m.But the C mea-sured by WAXD and the total endothermal melting(swelling)heat in SDSC thermograms,(△H_l),are notlinearly correlated.It has been found that,instead of the△H_l,△H_l’obtained from the △H_l by subtracting the en-dothermal heat,△H_l,and the C measured by WAXDare linearly correlated.On the basis of this linear rela-tion,the unknown C of another PAC sample is measuredby SDSC.The result is in good accordance with thatmeasured by WAXD.展开更多
A single scan has been performed in Differential Scanning Calorimetry (DSC) at a heating rate of 15oC/min under non-isothermal conditions to investigate the crystallization kinetics of glassy Se90Sb10-xAgx alloys (whe...A single scan has been performed in Differential Scanning Calorimetry (DSC) at a heating rate of 15oC/min under non-isothermal conditions to investigate the crystallization kinetics of glassy Se90Sb10-xAgx alloys (where x = 2, 4, 6, 8). For this purpose, Handerson’s theory based on non-isothermal method for thermal analysis of single-scan DSC data has been used. The activation energy of crystallization and order parameter has been determined and composition dependence of these parameters has been discussed.展开更多
A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene t...A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene terephthalate) resins were selected as the samples containing different catalysts. The relationships between the parameters obtained from the known Avrami equation and from one in the present paper were discussed. A method for applying the equation to determine the kinetic parameters from a constant heating and a constant cooling curve was proposed.展开更多
Differential scanning calorimetry (DSC) provides easy screening for thermal hazard evaluation. Here, we investigate the difference between using glass and stainless-steel vessels on the DSC measurement of exothermic d...Differential scanning calorimetry (DSC) provides easy screening for thermal hazard evaluation. Here, we investigate the difference between using glass and stainless-steel vessels on the DSC measurement of exothermic decomposition energy (QDSC) for 41 chemical substances (containing nitro, halogen, peroxide, and sulfur groups, and hydrazine bonds). Two borosilicate glass vessels (capillary and ampule) and one stainless-steel vessel were used. All QDSC values obtained were investigated with reference to the permissible fluctuation range specified by the ASTM (American Society for Testing and Materials) international Both glass vessels produced very similar QDSC values, despite different sample scales. The QDSC values obtained with the glass vessels were generally roughly within the variation tolerance range of the stainless-steel vessel. Notable exceptions were halogen- or sulfur-containing compounds;these exhibited smaller QDSC values with glass vessels in almost all cases. We will investigate whether certain structures in compounds react with stainless steel. The vessel material choice is crucial in evaluating the true reactivity of a substance.展开更多
Aim:Thiocolchicoside is a sulfur derivative of the colchicine widely used as the skeletal muscle relaxant in variety of muscle related disorders.Compatibility of the Thiocolchicoside is screened with the Eudragit RLPO...Aim:Thiocolchicoside is a sulfur derivative of the colchicine widely used as the skeletal muscle relaxant in variety of muscle related disorders.Compatibility of the Thiocolchicoside is screened with the Eudragit RLPO,Eudragit L-100 and Eudragit E-100 for checking its suitability for formulating as transdermal drug delivery system.Methods:The binary mixtures of the drug and polymers were placed in the Petri plates and the temperature and humidity were adjusted at 40℃±2℃ and 75%relative humidity.The drug and polymer mixture were examined on the FTIR and DSC for detection of any possible physical and chemical interactions.Results:Eudragit E100 and L100showed no significant interaction with the Thiocolchicoside and that was justified with differential scanning calorimetryand Fourier transform infraredspectra.However,Eudragit RLPO showed a slight interaction with the drug during the compatibility studies.展开更多
In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It...In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.展开更多
Polyamide 1010 (PA1010)/thermoplastie poly (ether urethane) elastomer (ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends...Polyamide 1010 (PA1010)/thermoplastie poly (ether urethane) elastomer (ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends were systematically investigated using differential scanning calorimetry. The crystallization kinetics results show that the addition of ether-based TPU hinders the crystallization of PA1010, and the hindrance effect increases with the increase of the concentration of ether-based TPU. Both pure PA1010 and PA1010/ether-based TPU blends exhibit double melting peaks in the process of nonisothermal crystallization. The double melting peaks change differently with the variation of cooling rate and blend composition. The cooling rate only influences the lower melting peak; however, the blend composition influences not only the lower melting peak but also the higher melting peak. The reason for the phenomenon must be the interaction between the two compositions.展开更多
Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon ...Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.展开更多
Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhous...Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.展开更多
Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide...Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.展开更多
Transition metal complexes of meso-tetra(4-myristyloxyphenyl)porphyrin TMPPM [M =Mn, Fe, Co, Ni, Cu, Zn; TMPP=mesotetra(4-myristyloxyphenyl)porphyrin] have been synthesized and characterized by means of elemental an...Transition metal complexes of meso-tetra(4-myristyloxyphenyl)porphyrin TMPPM [M =Mn, Fe, Co, Ni, Cu, Zn; TMPP=mesotetra(4-myristyloxyphenyl)porphyrin] have been synthesized and characterized by means of elemental analyses, UV-Vis spectra, infrared photoacoustic spectra, 1H NMR spectra, molar conductance and differential scanning calorimetry(DSC). The ligand and the Zn complex show liquid crystalline behavior. According to the DSC thermogram of the Zn complex, it exhibits a lower phase transition temperature -7.453 ℃ and a wide mesophase temperature span, 77 ℃.展开更多
Yttrium iron garnet powder samples(Y3-xDyxFe5O12), where part of yttrium ions are substituted by dysprosium ions with different concentrations are prepared by the solid state reaction method. The properties of the p...Yttrium iron garnet powder samples(Y3-xDyxFe5O12), where part of yttrium ions are substituted by dysprosium ions with different concentrations are prepared by the solid state reaction method. The properties of the prepared samples are examined by different methods such as x-ray diffraction(XRD), Mssbauer spectroscopy, macroscopic magnetization measurements, and thermal measurements. The XRD measurements show that all the samples reveal the presence of a single garnet phase with a BCC structure. Room temperature Mssbauer spectra indicate that iron ions occupy three magnetic sites, i.e., two octahedral sites and one tetrahedral site. The saturation magnetization and the initial magnetic susceptibility decrease with the increase of Dy^3+ substitution. The Curie temperature obtained from the thermal measurements seems to be independent of Dy^3+ substitution.展开更多
A real-time sensing of the molecular distillation process temperature by a FLUKE brand thermograph Ti50 IR FlexCam and thermography technique was realized. After completion of the molecular distillation, three propert...A real-time sensing of the molecular distillation process temperature by a FLUKE brand thermograph Ti50 IR FlexCam and thermography technique was realized. After completion of the molecular distillation, three properties of heat transport chain cuts and residues obtained in the process were estimated by Differential Scanning Calorimetry (DSC) (specific heat, enthalpy, thermal conductivity). These properties are of great importance for improving oil characterization and for future modeling and simulation of the molecular distillation process. The results show that through the method of Differential Scanning Calorimetry, profiles have been obtained from the variation of specific heat, enthalpy and thermal condutivity as a function of temperature for samples of cuts from the distillation (ASTM D-2892) and fractions of distillate and residue from the process of molecular distillation.展开更多
基金Project(2007CB613706)supported by the National Basic Research Program of ChinaProject(0330005412901)supported the Key Disciplines Development of Beijing Municipality("Resources,Environment and Recycling Economy"Interdisciplinary),ChinaProject(X0104001200905)supported by the Scientific Research Foundation for the New Doctoral Teachers,Beijing University of Technology,China
文摘The non-isothermal heating process of Mg-Sn powder mixture was studied by differential scanning calorimetry(DSC) technique and the synthesis kinetics of Mg2Sn was evaluated by the model-free and model-fitting methods.The activation energy and conversion function of Mg2Sn synthesis reaction are calculated to be 281.7 kJ/mol and g(α)=[-ln(1-α)] 1/4,respectively.The reaction mechanism of 2Mg+Sn→Mg2Sn under non-isothermal condition is regarded as "nucleation and growth" .During the non-isothermal heating process,the phase transformation occurred in the Mg-Sn powder mixture was analyzed by XRD and the microstructure evolution of Mg2Sn was observed by optical microscopy,which is in good agreement with the reaction mechanism of 2Mg+Sn→ Mg2Sn deduced from the kinetic evaluation.
文摘In order to test the thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane(RDX),the linear temperature rise experiment of RDX was carried out by differential scanning calorimeter under different heating rate conditions.The kinetic calculation of RDX thermal decomposition curve was carried out by Kissinger and Ozawa methods,respectively,and the thermal analysis software was used to calculate the parameters such as self-accelerating decomposition temperature.The results show that the initial decomposition temperature range,decomposition peak temperature range,and decomposition completion temperature range of RDX are 208.4-214.2,225.7-239.3 and 234.0-252.4℃,respectively,and the average decomposition enthalpy is 362.9 J·g^-1.Kissinger method was used to calculate the DSC experimental data of RDX,the apparent activation energy obtained is 190.8 kJ·mol^-1,which is coincident with the results calculated by Ozawa method at the end of the reaction,indicating that the apparent activation energy calculated by the two methods is relatively accurate.When the packaging mass values are 1.0,2.0 and 5.0 kg,respectively,the self-accelerating decomposition temperatures are 97.0,93.0 and 87.0℃,respectively,indicating that with the increase of packaging mass,the self-accelerating decomposition temperature gradually decreases,and the risk increases accordingly.
文摘The differential scanning calorimetric (DSC)curves of the mitochondria isolated from two varieties of sporophyte cytoplasmic male sterile and their fertile lines of Yie Bai and Ma Xie type rice have been determined. The curves show that the energy is released continuously as temperature rise to 70℃. Some thermodynamic and kinetic parameters of the energy release of the mitochondria have been obtained. The presented results showed that the mitochondria from cytoplasmic male sterile rice released more heat and they had higher energy barrier, less rate, and more complicated mechanism than that of their fertile lines in the energy release process.
文摘Nanocomposites were fabricated by using a commercial two part epoxy as a matrix and multiwalled carbon nanotubes, graphite fibers and boron nitride platelets as filler materials. Multiwalled carbon nanotubes (MWCNTs) that were produced by chemical vapor deposition were found to produce nanocomposites with better thermal diffusivity and thermal conductivity than the MWCNTs that were produced by the combustion method. Compared to the MWCNTs produced by both methods and graphite fibers, boron nitride produced nanocomposites with the highest thermal conductivity. Specific heat capacity was measured by using differential scanning calorimetry and thermal diffusivity was measured by using the laser flash.
文摘Background:Differential scanning calorimetry as a method of investigating and monitoring the kinetics of herbal medicinal plants.Some instrumental and experimental aspects are discussed.Methods:A brief survey is made of herbal medicinal plants and results of differential scanning calorimetry studies are reviewed and this discussion is presented the effects of the instrumental conditions like heating rate and the sample conditions like sample particle size,sample mass,sample purity,sample stability in the melting region and property of impurities.Conclusion:This study suggests that application of differential scanning calorimetry to study the interpretation on herbal medicinal drugs.
文摘Decomposition processes of the quenched Zn-Al alloys were studied by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the stabilities of supersaturated solid solution (SSS) of Zn-Al alloy and α' phase formed by quenching would reduce with the increase of Zn content and the precipitation of η-Zn phases even when aging at ambient temperature, so that the exothermic precipitation peak in DSC curve would disappear. The activation energy of the η-Zn precipitation and the reaction enthalpy were calculated and measured. The kinetics of α' decomposition or η-Zn formation was determined by XRD. The microstructure change during aging was observed by TEM.
基金Financial support by the Austrian Federal Government (in particular from Bundesministerium für Verkehr, Innovation und Technologie and Bundesministerium für Wirtschaft, Familie und Jugend) represented by sterreichische Forschungsfrderungsgesellschaft mbHthe Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsfrderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme is gratefully acknowledged
文摘Differential scanning calorimetry (DSC) has been used extensively to study different solid state reactions. The signals measured in DSC are associated with the growth and dissolution of different precipitates during a specific heat cycle. The time-temperature dependence of heat cycles and the corresponding heat flow evolution measured in the sample by DSC provide valuable experimental information about the phase evolution and the precipitation kinetics in the material. The thermo-kinetic computer simulation was used to predict the DSC signals of samples taken from 6xxx and 2xxx alloys. In the model, the evolution of different metastable and stable phases and the role and influence of excess quenched-in vacancies in the early stage of precipitation were taken into account. Transmission electron microscopy (TEM) and high-resolution TEM were used to verify the existence of precipitates, their size and number density at specific points of the DSC curves.
文摘In this paper the measurement of crystallinity(C)ofacrylic copolymer(PAC),by Swelling Differential Scan-ning Calorimetry(SDSC)is discussed.Common DSC isonly used for measuring the crystallinity of polymers withmelting point,(T_m),below their decomposition temper-ature,(T_d).As temperature rises,polymers with swell-ing agent added become swollen and dissolved,goingthrough whole process of breaking solid structures.Thus,SDSC makes it possible to measure the crystallini-ty of polymers even with T_d below T_m.But the C mea-sured by WAXD and the total endothermal melting(swelling)heat in SDSC thermograms,(△H_l),are notlinearly correlated.It has been found that,instead of the△H_l,△H_l’obtained from the △H_l by subtracting the en-dothermal heat,△H_l,and the C measured by WAXDare linearly correlated.On the basis of this linear rela-tion,the unknown C of another PAC sample is measuredby SDSC.The result is in good accordance with thatmeasured by WAXD.
文摘A single scan has been performed in Differential Scanning Calorimetry (DSC) at a heating rate of 15oC/min under non-isothermal conditions to investigate the crystallization kinetics of glassy Se90Sb10-xAgx alloys (where x = 2, 4, 6, 8). For this purpose, Handerson’s theory based on non-isothermal method for thermal analysis of single-scan DSC data has been used. The activation energy of crystallization and order parameter has been determined and composition dependence of these parameters has been discussed.
文摘A new differential equation was derived from the modified first-order kinetic model to describe the polymer crystallization processes. The crystallization experiments were carried out by means of DSC. Poly (ethylene terephthalate) resins were selected as the samples containing different catalysts. The relationships between the parameters obtained from the known Avrami equation and from one in the present paper were discussed. A method for applying the equation to determine the kinetic parameters from a constant heating and a constant cooling curve was proposed.
文摘Differential scanning calorimetry (DSC) provides easy screening for thermal hazard evaluation. Here, we investigate the difference between using glass and stainless-steel vessels on the DSC measurement of exothermic decomposition energy (QDSC) for 41 chemical substances (containing nitro, halogen, peroxide, and sulfur groups, and hydrazine bonds). Two borosilicate glass vessels (capillary and ampule) and one stainless-steel vessel were used. All QDSC values obtained were investigated with reference to the permissible fluctuation range specified by the ASTM (American Society for Testing and Materials) international Both glass vessels produced very similar QDSC values, despite different sample scales. The QDSC values obtained with the glass vessels were generally roughly within the variation tolerance range of the stainless-steel vessel. Notable exceptions were halogen- or sulfur-containing compounds;these exhibited smaller QDSC values with glass vessels in almost all cases. We will investigate whether certain structures in compounds react with stainless steel. The vessel material choice is crucial in evaluating the true reactivity of a substance.
基金This work was carried out under the financial support received from Ministry of Science&Technology,Department of Science and Technology New Delhi,Govt of India(File No SP/YO/063).
文摘Aim:Thiocolchicoside is a sulfur derivative of the colchicine widely used as the skeletal muscle relaxant in variety of muscle related disorders.Compatibility of the Thiocolchicoside is screened with the Eudragit RLPO,Eudragit L-100 and Eudragit E-100 for checking its suitability for formulating as transdermal drug delivery system.Methods:The binary mixtures of the drug and polymers were placed in the Petri plates and the temperature and humidity were adjusted at 40℃±2℃ and 75%relative humidity.The drug and polymer mixture were examined on the FTIR and DSC for detection of any possible physical and chemical interactions.Results:Eudragit E100 and L100showed no significant interaction with the Thiocolchicoside and that was justified with differential scanning calorimetryand Fourier transform infraredspectra.However,Eudragit RLPO showed a slight interaction with the drug during the compatibility studies.
文摘In the dry-sliding process of the woven self-lubricating liner which is used in the self-lubricating spherical plain bearing, the friction heat plays an important role in the tribological performances of the liner. It has important value to study on the relationship between tribological performances of the liner and the friction heat. Unforttmately, up to now, published work on this relationship is quite scarce. Therefore, the effect of friction heat on the tribological performances of the liner was investigated in the present work. The tribological behaviors of the liner were evaluated by using the high temperature end surface wear tester. Scanning electron microscopy (SEM) was utilized to examine the morphologies of worn surfaces of the liner and study the failure modes. Differential scanning calorimetry (DSC) measurement and X-ray diffraction (XRD) analysis were performed to study the behaviors of the wear debris. The temperature rise on the worn surface was calculated according to classical models. SEM observation shows that the dominating wear mechanism for the liner is mainly affected by friction shear force, contact pressure and friction heat. Higher fusion heat for the wear debris than that for the pure polytetrafluroethylene (PTFE) indicates that the PTFE is the main portion of the wear debris, and, the PTFE in the wear debris shows a higher crystallisation degree owing to the effects of friction shear force and the friction heat. Combining the calculated temperature rise results with the wear rate of the liner, it can be concluded that the effects of temperature rise o n the tribological performances of the liner become more obvious when the temperature rise exceeds the glass transition temperature (Tg) of the PTFE. The wear resistance of the liner deteriorates dramatically when the temperature rise approaches to the melting point (Ton) of the PTFE. The tribological performances of the liner can be improved when the temperature rise exceeds Tg but is far lower than Ton- The present study on the relationship between the temperature rise and the tribological performances of the liner may provide the basis for further understanding of the wear mechanisms of the liner as well as the relationship between the formation of the PTFE transfer film and the friction heat during the dry-sliding of the Finer.
基金Supported by the Science and Technology Council of Jilin Province(No 20020337)
文摘Polyamide 1010 (PA1010)/thermoplastie poly (ether urethane) elastomer (ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends were systematically investigated using differential scanning calorimetry. The crystallization kinetics results show that the addition of ether-based TPU hinders the crystallization of PA1010, and the hindrance effect increases with the increase of the concentration of ether-based TPU. Both pure PA1010 and PA1010/ether-based TPU blends exhibit double melting peaks in the process of nonisothermal crystallization. The double melting peaks change differently with the variation of cooling rate and blend composition. The cooling rate only influences the lower melting peak; however, the blend composition influences not only the lower melting peak but also the higher melting peak. The reason for the phenomenon must be the interaction between the two compositions.
基金Supported by the Natural Science Foundation of Zhejiang Province(LY15B060006)the National Natural Science Foundation of China(21104066)the Zhejiang Province Public Technology Research and Industrial Grant(2012C21078)
文摘Bio-sourced nylon 69,one of promising engineering plastics,has a great potential in developing sustainable technology and various commercial applications.Isothermal and nonisothermal crystallization kinetics of nylon 69 is a base to optimize the process conditions and establish the structure–property correlations for nylon 69,and it is also highly bene ficial for successful applications of nylon products in industry.Isothermal and nonisothermal crystallization kinetics has been investigated by differential scanning calorimetry for nylon 69,bio-sourced even–odd nylon.The isothermal crystallization kinetics has been analyzed by the Avrami equation,the calculated Avrami exponent at various crystallization temperatures falls into the range of 2.28 and 2.86.In addition,the Avrami equation modi fied by Jeziorny and the equation suggested by Mo have been adopted to study the nonisothermal crystallization.The activation energies for isothermal and nonisothermal crystallization have also been determined.The study demonstrates that the crystallization model of nylon 69 might be a twodimensional(circular)growth at both isothermal and nonisothermal crystallization conditions.Furthermore,the value of the crystallization rate parameter(K)decreases signi ficantly but the crystallization half-time(t1/2)increases with the increase of the isothermal crystallization temperature.To nonisothermal crystallization,the crystallization rate increases as the cooling rate increases according to the analysis of Jeziorny's theory.The results of Mo's theory suggest that a faster cooling rate is required to reach a higher relative degree of crystallinity in a unit of time,and crystallization rate decreases when the relative degree of crystallinity increases at nonisothermal crystallization conditions.
基金Supported by the Research Fund of Gaziosmanpasa University (No.2003/42).
文摘Stearic acid (67.83℃) and myristic acid (52.32℃) have high melting temperatures that can limit their use as phase change material (PCM) in low temperature solar heating applications such as solar space and greenhouse heating in regard to climatic requirements. However, their melting temperatures can be adjusted to a suitable value by preparing a eutectic mixture of the myristic acid (MA) and the stearic acid (SA). In the present study, the thermal analysis based on differential scanning calorimetry (DSC) technique shows that the mixture of myristic acid (MA) and stearic acid (SA) in the respective composition (by mass) of 64% and 36% forms a eutectic mixture having melting temperature of 44.13℃ and the latent heat of fusion of 182.4J·g-1. The thermal energy storage characteristics of the MA-SA eutectic mixture filled in the annulus of two concentric pipes were also experimentally established. The heat recovery rate and heat charging/discharging fractions were determined with respect to the change in the mass flow rate and the inlet temperature of heat transfer fluid. Based on the results obtained by DSC analysis and by the heat charg- ing/discharging processes of the PCM, it can be concluded that the MA-SA eutectic mixture is a potential material for low temperature thermal energy storage applications in terms of its thermo-physical and thermal characteristics.
基金Scientific and Technological Project of Hubei Province(No.2002AA105A01)
文摘Acetanilide, adipic acid and potassium hydrogen phthalate were chosen as nucleating agents of polyvinyl chloride(PVC), and their effects on PVC crystallization were studied by differential scanning calorimetry, wide angle X-ray diffraction and fourier transform infrared spectroscopy. The experimental results indicate that all of the three additives are compatible with PVC to some extent, but adipic acid's compatibility with PVC is less satisfactory. The three additives can improve PVC crystallinity, and acetanilide can decrease PVC glass transition temperature(T)and narrow PVC melting range, while adipic acid and potassium hydrogen phthalate rise T of PVC and widen its melting range. All additives do not affect PVC crystal system and all g samples are in orthorhombic system. All additives can improve (200), (110), (210) and (201, 111) planes growing. Moreover, acetanilide and adipic acid can shrink PVC spacings and improve the crystal perfection of PVC, but potassium hydrogen phthalate swells spacings and reduces the perfection of PVC crystal.
文摘Transition metal complexes of meso-tetra(4-myristyloxyphenyl)porphyrin TMPPM [M =Mn, Fe, Co, Ni, Cu, Zn; TMPP=mesotetra(4-myristyloxyphenyl)porphyrin] have been synthesized and characterized by means of elemental analyses, UV-Vis spectra, infrared photoacoustic spectra, 1H NMR spectra, molar conductance and differential scanning calorimetry(DSC). The ligand and the Zn complex show liquid crystalline behavior. According to the DSC thermogram of the Zn complex, it exhibits a lower phase transition temperature -7.453 ℃ and a wide mesophase temperature span, 77 ℃.
基金Project supported by the Deanship of Research and Graduate Studies of Yarmouk University(Garnet No.33/2015)
文摘Yttrium iron garnet powder samples(Y3-xDyxFe5O12), where part of yttrium ions are substituted by dysprosium ions with different concentrations are prepared by the solid state reaction method. The properties of the prepared samples are examined by different methods such as x-ray diffraction(XRD), Mssbauer spectroscopy, macroscopic magnetization measurements, and thermal measurements. The XRD measurements show that all the samples reveal the presence of a single garnet phase with a BCC structure. Room temperature Mssbauer spectra indicate that iron ions occupy three magnetic sites, i.e., two octahedral sites and one tetrahedral site. The saturation magnetization and the initial magnetic susceptibility decrease with the increase of Dy^3+ substitution. The Curie temperature obtained from the thermal measurements seems to be independent of Dy^3+ substitution.
文摘A real-time sensing of the molecular distillation process temperature by a FLUKE brand thermograph Ti50 IR FlexCam and thermography technique was realized. After completion of the molecular distillation, three properties of heat transport chain cuts and residues obtained in the process were estimated by Differential Scanning Calorimetry (DSC) (specific heat, enthalpy, thermal conductivity). These properties are of great importance for improving oil characterization and for future modeling and simulation of the molecular distillation process. The results show that through the method of Differential Scanning Calorimetry, profiles have been obtained from the variation of specific heat, enthalpy and thermal condutivity as a function of temperature for samples of cuts from the distillation (ASTM D-2892) and fractions of distillate and residue from the process of molecular distillation.