The aim of the present investigation was to develop a biosensor for the detection of amino acids, Leucine, Isoleucine and Valine based on a quartz crystal nanobalance. leucine (Leu), isoleucine (Ile), and valine (Val)...The aim of the present investigation was to develop a biosensor for the detection of amino acids, Leucine, Isoleucine and Valine based on a quartz crystal nanobalance. leucine (Leu), isoleucine (Ile), and valine (Val) were selectively determined by quartz crystal nanobalance (QCN) sensor in conjunction with net analyte signal (NAS)-based method called HLA/GO. An orthogonal design was applied for the formation of calibration and prediction sets including Leu, Ile and Val compounds. The selection of the optimal time range involved the calculation of the net analyte sig-nal regression plot in any considered time window for each test sample. The searching of a region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value was carried out by applying a moving window strategy. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 300 s were used to determine mixtures of compounds by HLA/GO method. The results showed that the method was successfully applied for the determina-tion of Leu, Ile and Val.展开更多
The interactions of phospholipid monolayers (dipalmitoyl phosphatidyl choline;DPPC and dimyristoyl phosphatidyl choline;DMPC) with volatile anesthetic isoflurane were investigated using quartz crystal microbalance (QC...The interactions of phospholipid monolayers (dipalmitoyl phosphatidyl choline;DPPC and dimyristoyl phosphatidyl choline;DMPC) with volatile anesthetic isoflurane were investigated using quartz crystal microbalance (QCM) and quartz crystal impedance (QCI) methods. The quartz crystal oscillator was attached horizontally on the surface of DPPC and DMPC monolayer formed on the water surface. Physisorption of isoflurane hydrate at the DPPC monolayer surface was monitored in terms of frequency and resistance change of quartz crystal on addition of anesthetics isoflurane. Both frequency and resistance change showed the elastic nature of DPPC monolayer. Measurement of DMPC monolayer-isoflurane hydrate revealed the expandable nature of DMPC monolayer. Variation of frequency and impedance of DPPC and DMPC monolayer on addition of isoflurane which proved a two-step change has occurred at monolayer surface at isoflurane concentration of ≤8 mM that has been attributed to isoflurane aggregation at monolayer/water interface. Isoflurane hydrates formed in the process have capability to affect the interfacial properties of monolayer such as existence of structured water.展开更多
Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms...Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms. The initial oscillation is triggered by a part of crystal oscillator forming a CR oscillator. The negative resistance ranges to 4 MΩ at gmf of 4.1 μA/V. In a limited frequency range, the circuit shows negative reactance Ccci = -3.4 pF equivalent to inductance Lcc = 9.8 H. The Allan standard deviation indicated 10-11 to 10-10, showing high stability comparable to general quartz crystal oscillator.展开更多
The work described in this paper is a study of the estimation of copper, silver and gold coverages on the iridium field emitter tip surface. The study has been carried out by using a simple field emission microscope d...The work described in this paper is a study of the estimation of copper, silver and gold coverages on the iridium field emitter tip surface. The study has been carried out by using a simple field emission microscope designed especially for the purpose of the adsorbate coverage calibration. It was equipped with an iridium field emitter tip. On one side of the microscope was the vapor source 12.5 cm from the tip, and on the other side 16.2 cm from the source was a quartz crystal oscillator. The crystal leads were spot welded to a two-pin tungsten-glass press-seal. In front of the crystal, a nickel shield was mounted in which there was a circular hole of an area of 0.0804 cm2, slightly smaller than the surface of the crystal, to prevent shorting of the conducting ends of the crystal which would be brought about by the condensed metal. The sensing crystal inside the microscope was driven by a small circuit placed just outside the microscope. The driving circuit was in turn connected to another circuit which comprised a frequency comparator unit which could read the frequency of the quartz crystal oscillator before and after the deposition of the adsorbate and gave a direct digital reading of ?(f is the resonance frequency of the crystal before the deposition of the adsorbate and Δf is the difference in the frequency of the oscillator after and before the deposition of the adsorbate on the crystal). The mass added to either side of the crystal alters its resonant frequency. The frequency shift obtained for a certain thickness of the deposited film depends on the density of the deposited film [1] [2].展开更多
We report a resonant method to measure the wall capacitance(C_w) and solution resistance(R_S) in a capacitively coupled contactless conductivity detector(C^4D).Under the typical operating conditions in capillary...We report a resonant method to measure the wall capacitance(C_w) and solution resistance(R_S) in a capacitively coupled contactless conductivity detector(C^4D).Under the typical operating conditions in capillary electrophoresis(I.D.50μm,O.D. 360μm,electrode length of 4 mm,electrode gap of 1 mm,frequency of 200 kHz),the values of C_w measured in 1 and 20 mmol/L NaCl solutions are 2.8 and 32 fF,which are only 1.1%and 12%of prediction by the equation in references,respectively.The value of R_S is less than the prediction in solutions withκ〈0.02 S/m.The response current of C^4D is due to the change in C_w because the total impedance of a C^4D is composed mainly by the impedance from C_w.展开更多
文摘The aim of the present investigation was to develop a biosensor for the detection of amino acids, Leucine, Isoleucine and Valine based on a quartz crystal nanobalance. leucine (Leu), isoleucine (Ile), and valine (Val) were selectively determined by quartz crystal nanobalance (QCN) sensor in conjunction with net analyte signal (NAS)-based method called HLA/GO. An orthogonal design was applied for the formation of calibration and prediction sets including Leu, Ile and Val compounds. The selection of the optimal time range involved the calculation of the net analyte sig-nal regression plot in any considered time window for each test sample. The searching of a region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value was carried out by applying a moving window strategy. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 300 s were used to determine mixtures of compounds by HLA/GO method. The results showed that the method was successfully applied for the determina-tion of Leu, Ile and Val.
文摘The interactions of phospholipid monolayers (dipalmitoyl phosphatidyl choline;DPPC and dimyristoyl phosphatidyl choline;DMPC) with volatile anesthetic isoflurane were investigated using quartz crystal microbalance (QCM) and quartz crystal impedance (QCI) methods. The quartz crystal oscillator was attached horizontally on the surface of DPPC and DMPC monolayer formed on the water surface. Physisorption of isoflurane hydrate at the DPPC monolayer surface was monitored in terms of frequency and resistance change of quartz crystal on addition of anesthetics isoflurane. Both frequency and resistance change showed the elastic nature of DPPC monolayer. Measurement of DMPC monolayer-isoflurane hydrate revealed the expandable nature of DMPC monolayer. Variation of frequency and impedance of DPPC and DMPC monolayer on addition of isoflurane which proved a two-step change has occurred at monolayer surface at isoflurane concentration of ≤8 mM that has been attributed to isoflurane aggregation at monolayer/water interface. Isoflurane hydrates formed in the process have capability to affect the interfacial properties of monolayer such as existence of structured water.
文摘Low-frequency double-resonance quartz crystal oscillator was developed with active inductance circuit aiming the start-up of stable oscillation of tuning fork-type quartz crystal resonator at 32.768 kHz within 0.37 ms. The initial oscillation is triggered by a part of crystal oscillator forming a CR oscillator. The negative resistance ranges to 4 MΩ at gmf of 4.1 μA/V. In a limited frequency range, the circuit shows negative reactance Ccci = -3.4 pF equivalent to inductance Lcc = 9.8 H. The Allan standard deviation indicated 10-11 to 10-10, showing high stability comparable to general quartz crystal oscillator.
文摘The work described in this paper is a study of the estimation of copper, silver and gold coverages on the iridium field emitter tip surface. The study has been carried out by using a simple field emission microscope designed especially for the purpose of the adsorbate coverage calibration. It was equipped with an iridium field emitter tip. On one side of the microscope was the vapor source 12.5 cm from the tip, and on the other side 16.2 cm from the source was a quartz crystal oscillator. The crystal leads were spot welded to a two-pin tungsten-glass press-seal. In front of the crystal, a nickel shield was mounted in which there was a circular hole of an area of 0.0804 cm2, slightly smaller than the surface of the crystal, to prevent shorting of the conducting ends of the crystal which would be brought about by the condensed metal. The sensing crystal inside the microscope was driven by a small circuit placed just outside the microscope. The driving circuit was in turn connected to another circuit which comprised a frequency comparator unit which could read the frequency of the quartz crystal oscillator before and after the deposition of the adsorbate and gave a direct digital reading of ?(f is the resonance frequency of the crystal before the deposition of the adsorbate and Δf is the difference in the frequency of the oscillator after and before the deposition of the adsorbate on the crystal). The mass added to either side of the crystal alters its resonant frequency. The frequency shift obtained for a certain thickness of the deposited film depends on the density of the deposited film [1] [2].
基金supported by the National Natural Science Foundation of China(nos.20975062 and 21175084)
文摘We report a resonant method to measure the wall capacitance(C_w) and solution resistance(R_S) in a capacitively coupled contactless conductivity detector(C^4D).Under the typical operating conditions in capillary electrophoresis(I.D.50μm,O.D. 360μm,electrode length of 4 mm,electrode gap of 1 mm,frequency of 200 kHz),the values of C_w measured in 1 and 20 mmol/L NaCl solutions are 2.8 and 32 fF,which are only 1.1%and 12%of prediction by the equation in references,respectively.The value of R_S is less than the prediction in solutions withκ〈0.02 S/m.The response current of C^4D is due to the change in C_w because the total impedance of a C^4D is composed mainly by the impedance from C_w.