In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing pr...Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.展开更多
AIM To prospectively investigate the efficacy and safety of clipflap assisted endoscopic submucosal dissection(ESD) for gastric tumors.METHODS From May 2015 to October 2016, we enrolled 104 patients with gastric cance...AIM To prospectively investigate the efficacy and safety of clipflap assisted endoscopic submucosal dissection(ESD) for gastric tumors.METHODS From May 2015 to October 2016, we enrolled 104 patients with gastric cancer or adenoma scheduled for ESD at Shiga University of Medical Science Hospital. We randomized patients into two subgroups using the minimization method based on location of the tumor(upper, middle or lower third of the stomach), tumor size(< 20 mm or > 20 mm) and ulcer status: ESD using an endoclip(the clip-flap group) and ESD without an endoclip(the conventional group). Therapeutic efficacy(procedure time) and safety(complication: Gastrointestinal bleeding and perforation) were assessed. RESULTS En bloc resection was performed in all patients. Four patients had delayed bleeding(3.8%) and two had perforation(1.9%). No significant differences in en bloc resection rate(conventional group: 100%, clip flap group: 100%), curative endoscopic resection rate(conventional group: 90.9%, clip flap group: 89.8%, P = 0.85), procedure time(conventional group: 70.8 ± 46.2 min, clip flap group: 74.7 ± 53.3 min, P = 0.69), area of resected specimen(conventional group: 884.6 ± 792.1 mm^2, clip flap group: 1006.4 ± 1004.8 mm^2, P = 0.49), delayed bleeding rate(conventional group: 5.5%, clip flap group: 2.0%, P = 0.49), or perforation rate(conventional group: 1.8%, clip flap group: 2.0%, P = 0.93) were found between the two groups. Lessexperienced endoscopists did not show any differences in procedure time between the two groups.CONCLUSION For patients with early-stage gastric tumors, the clipflap method has no advantage in efficacy or safety compared with the conventional method.展开更多
In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can eff...In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.展开更多
Due to various reasons, the inspection methods often need to be changed, and the detection reagents often need to be replaced. In this study, a comparative experiment was conducted between the ethanol-based and ether-...Due to various reasons, the inspection methods often need to be changed, and the detection reagents often need to be replaced. In this study, a comparative experiment was conducted between the ethanol-based and ether-based determination methods for oil content in imported wool. The determination results obtained from the two methods were treated as abscissa and ordinate respectively,and their linear relationship was analyzed. According to the linear regression analysis, the conversion equation of determination result between the two methods was obtained. In addition, the repeatability admissible error and reproducibility admissible error were established through analyzing the comparative experimental results by scientific software. This study will bring new ideas for further researches in this field, and provide reference for solving the similar problems in actual inspection work.展开更多
The law "Trial and Error Ordinance" enacted in 2006 and spreading throughout China especially since 2016 is the best starting point for China's democratization, because Chinese government officials cannot be confro...The law "Trial and Error Ordinance" enacted in 2006 and spreading throughout China especially since 2016 is the best starting point for China's democratization, because Chinese government officials cannot be confronted with their new challenges directly without the right to trial and error. This study has tried to build a new democratic theory, mistake-tolerant democracy based on the right to trial and error with Chinese characteristics and Western value to guide Chinese democratized way. The right theory of mistake-tolerant democracy is the new right paradigm, "the right to trial and error as an original right and mutual empowerment theory" proposed by the combination of the state of nature and the scientific method of trial and error rather than natural right theory and social contract theory. Mistake-tolerant democracy emphasizes that the people have the equal right to trial and error as an original right, and the officials' right to trial and error are granted "from the people and should empower the corresponding rights to them, which is the meaning of mutual empowerment theory.展开更多
Objective To explore the differences in three different registration methods of cone beam computed tomography(CBCT)-guided down-regulated intense radiation therapy for lung cancer as well as the effects of tumor locat...Objective To explore the differences in three different registration methods of cone beam computed tomography(CBCT)-guided down-regulated intense radiation therapy for lung cancer as well as the effects of tumor location,treatment mode,and tumor size on registration.Methods This retrospective analysis included 80 lung cancer patients undergoing radiotherapy in our hospital from November 2017 to October 2019 and compared automatic bone registration,automatic grayscale(t+r)registration,and automatic grayscale(t)positioning error on the X-,Y-,and Z-axes under three types of registration methods.The patients were also grouped according to tumor position,treatment mode,and tumor size to compare positioning errors.Results On the X-,Y-,and Z-axes,automatic grayscale(t+r)and automatic grayscale(t)registration showed a better trend.Analysis of the different treatment modes showed differences in the three registration methods;however,these were not statistically significant.Analysis according to tumor sizes showed significant differences between the three registration methods(P<0.05).Analysis according to tumor positions showed differences in the X-and Y-axes that were not significant(P>0.05),while the autopsy registration in the Z-axis showed the largest difference in the mediastinal and hilar lymph nodes(P<0.05).Conclusion The treatment mode was not the main factor affecting registration error in lung cancer.Three registration methods are available for tumors in the upper and lower lungs measuring<3 cm;among these,automatic gray registration is recommended,while any gray registration method is recommended for tumors located in the mediastinal hilar site measuring<3 cm and in the upper and lower lungs≥3 cm.展开更多
In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove...In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.展开更多
The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at...The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.展开更多
In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because ...In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.展开更多
The efficacy of error correction and various kinds of correction approaches is one of the key issues in second language writing faced by both teachers and researchers. The current paper reviews the definition of error...The efficacy of error correction and various kinds of correction approaches is one of the key issues in second language writing faced by both teachers and researchers. The current paper reviews the definition of error correction and examines the different views on whether error correction in L2 writing should be corrected. In particular, the paper discusses and analyses the three common correction methods: direct correction, peer feedback and indirect correction. Teachers are encouraged to weigh and analyze the advantages and disadvantages of these methods according to the current literature, employ the most beneficial error correction method in L2 writing, and adapt its suitability to their teaching context.展开更多
The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally in...The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.展开更多
The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for e...The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.展开更多
Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the resul...Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.展开更多
A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equa...A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.展开更多
A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth m...A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.展开更多
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an impr...To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.展开更多
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
基金Supported by National Natural Science Foundation of China(Grant No.51435006)
文摘Although there are some multi-sensor methods for measuring the straightness and tilt errors of a linear slideway, they need to be further improved in some aspects, such as suppressing measurement noise and reducing precondition.In this paper, a new four-sensor method with an improved measurement system is proposed to on-machine separate the straightness and tilt errors of a linear slideway from the sensor outputs, considering the influences of the reference surface profile and the zero-adjustment values. The improved system is achieved by adjusting a single sensor to di erent positions. Based on the system, a system of linear equations is built by fusing the sensor outputs to cancel out the e ects of the straightness and tilt errors. Three constraints are then derived and supplemented into the linear system to make the coe cient matrix full rank. To restrain the sensitivity of the solution of the linear system to the measurement noise in the sensor outputs, the Tikhonov regularization method is utilized. After the surface profile is obtained from the solution, the straightness and tilt errors are identified from the sensor outputs. To analyze the e ects of the measurement noise and the positioning errors of the sensor and the linear slideway, a series of computer simulations are carried out. An experiment is conducted for validation, showing good consistency. The new four-sensor method with the improved measurement system provides a new way to measure the straightness and tilt errors of a linear slideway, which can guarantee favorable propagations of the residuals induced by the noise and the positioning errors.
文摘AIM To prospectively investigate the efficacy and safety of clipflap assisted endoscopic submucosal dissection(ESD) for gastric tumors.METHODS From May 2015 to October 2016, we enrolled 104 patients with gastric cancer or adenoma scheduled for ESD at Shiga University of Medical Science Hospital. We randomized patients into two subgroups using the minimization method based on location of the tumor(upper, middle or lower third of the stomach), tumor size(< 20 mm or > 20 mm) and ulcer status: ESD using an endoclip(the clip-flap group) and ESD without an endoclip(the conventional group). Therapeutic efficacy(procedure time) and safety(complication: Gastrointestinal bleeding and perforation) were assessed. RESULTS En bloc resection was performed in all patients. Four patients had delayed bleeding(3.8%) and two had perforation(1.9%). No significant differences in en bloc resection rate(conventional group: 100%, clip flap group: 100%), curative endoscopic resection rate(conventional group: 90.9%, clip flap group: 89.8%, P = 0.85), procedure time(conventional group: 70.8 ± 46.2 min, clip flap group: 74.7 ± 53.3 min, P = 0.69), area of resected specimen(conventional group: 884.6 ± 792.1 mm^2, clip flap group: 1006.4 ± 1004.8 mm^2, P = 0.49), delayed bleeding rate(conventional group: 5.5%, clip flap group: 2.0%, P = 0.49), or perforation rate(conventional group: 1.8%, clip flap group: 2.0%, P = 0.93) were found between the two groups. Lessexperienced endoscopists did not show any differences in procedure time between the two groups.CONCLUSION For patients with early-stage gastric tumors, the clipflap method has no advantage in efficacy or safety compared with the conventional method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40575036 and 40325015).Acknowledgement The authors thank Drs Zhang Pei-Qun and Bao Ming very much for their valuable comments on the present paper.
文摘In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.
文摘Due to various reasons, the inspection methods often need to be changed, and the detection reagents often need to be replaced. In this study, a comparative experiment was conducted between the ethanol-based and ether-based determination methods for oil content in imported wool. The determination results obtained from the two methods were treated as abscissa and ordinate respectively,and their linear relationship was analyzed. According to the linear regression analysis, the conversion equation of determination result between the two methods was obtained. In addition, the repeatability admissible error and reproducibility admissible error were established through analyzing the comparative experimental results by scientific software. This study will bring new ideas for further researches in this field, and provide reference for solving the similar problems in actual inspection work.
文摘The law "Trial and Error Ordinance" enacted in 2006 and spreading throughout China especially since 2016 is the best starting point for China's democratization, because Chinese government officials cannot be confronted with their new challenges directly without the right to trial and error. This study has tried to build a new democratic theory, mistake-tolerant democracy based on the right to trial and error with Chinese characteristics and Western value to guide Chinese democratized way. The right theory of mistake-tolerant democracy is the new right paradigm, "the right to trial and error as an original right and mutual empowerment theory" proposed by the combination of the state of nature and the scientific method of trial and error rather than natural right theory and social contract theory. Mistake-tolerant democracy emphasizes that the people have the equal right to trial and error as an original right, and the officials' right to trial and error are granted "from the people and should empower the corresponding rights to them, which is the meaning of mutual empowerment theory.
基金Supported by grants from the Nanchong City School Cooperation Project(No.18SXHZ0542)Hubei Chen Xiaoping Science and Technology Development Foundation Project(No.CXPJJH11900002-037)Sichuan Medical Research Youth Innovation Project(No.Q18031).
文摘Objective To explore the differences in three different registration methods of cone beam computed tomography(CBCT)-guided down-regulated intense radiation therapy for lung cancer as well as the effects of tumor location,treatment mode,and tumor size on registration.Methods This retrospective analysis included 80 lung cancer patients undergoing radiotherapy in our hospital from November 2017 to October 2019 and compared automatic bone registration,automatic grayscale(t+r)registration,and automatic grayscale(t)positioning error on the X-,Y-,and Z-axes under three types of registration methods.The patients were also grouped according to tumor position,treatment mode,and tumor size to compare positioning errors.Results On the X-,Y-,and Z-axes,automatic grayscale(t+r)and automatic grayscale(t)registration showed a better trend.Analysis of the different treatment modes showed differences in the three registration methods;however,these were not statistically significant.Analysis according to tumor sizes showed significant differences between the three registration methods(P<0.05).Analysis according to tumor positions showed differences in the X-and Y-axes that were not significant(P>0.05),while the autopsy registration in the Z-axis showed the largest difference in the mediastinal and hilar lymph nodes(P<0.05).Conclusion The treatment mode was not the main factor affecting registration error in lung cancer.Three registration methods are available for tumors in the upper and lower lungs measuring<3 cm;among these,automatic gray registration is recommended,while any gray registration method is recommended for tumors located in the mediastinal hilar site measuring<3 cm and in the upper and lower lungs≥3 cm.
文摘In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.
文摘The analysis and calculating method of dynamic errors of CMMs during probing are discussed.To relate the dynamic displacement errors with the dynamic rotational errors a method for obtaining the displacement errors at the probing position from dynamic rotational errors is presented.It is pointed out that the finite element method might be used for modeling dynamic errors.However,dynamic errors are difficult to be modeled so a combined practical and theoretical approach is needed.In addition,the dynamic errors are measured with inductive position sensors.
文摘In this paper the main sources causing the scatter of the experimental results of the material parameters are discussed. They can be divided into two parts: one is the experimental errors which are introduced because of the inaccuracy of experimental equipment, the experimental techniques, etc., and the form of the scatter caused by this source is called external distribution. The other is due to the irregularity and inhomogeneity of the material structure and the randomness of deformation process. The scatter caused by this source is inherent and then this form of the scatter is called internal distribution. Obviously the experimental distribution of material parameters combines these two distributions in some way; therefore, it is a sum distribution of the external distribution and the internal distribution. In view of this , a general method used to analyse the influence of the experimental errors on the experimental results is presented, and three criteria used to value this influence are defined. An example in which the fracture toughness KIC is analysed shows that this method is reasonable, convenient and effective.
文摘The efficacy of error correction and various kinds of correction approaches is one of the key issues in second language writing faced by both teachers and researchers. The current paper reviews the definition of error correction and examines the different views on whether error correction in L2 writing should be corrected. In particular, the paper discusses and analyses the three common correction methods: direct correction, peer feedback and indirect correction. Teachers are encouraged to weigh and analyze the advantages and disadvantages of these methods according to the current literature, employ the most beneficial error correction method in L2 writing, and adapt its suitability to their teaching context.
文摘The dimensional accuracy of machined parts is strongly influenced by the thermal behavior of machine tools (MT). Minimizing this influence represents a key objective for any modern manufacturing industry. Thermally induced positioning error compensation remains the most effective and practical method in this context. However, the efficiency of the compensation process depends on the quality of the model used to predict the thermal errors. The model should consistently reflect the relationships between temperature distribution in the MT structure and thermally induced positioning errors. A judicious choice of the number and location of temperature sensitive points to represent heat distribution is a key factor for robust thermal error modeling. Therefore, in this paper, the temperature sensitive points are selected following a structured thermomechanical analysis carried out to evaluate the effects of various temperature gradients on MT structure deformation intensity. The MT thermal behavior is first modeled using finite element method and validated by various experimentally measured temperature fields using temperature sensors and thermal imaging. MT Thermal behavior validation shows a maximum error of less than 10% when comparing the numerical estimations with the experimental results even under changing operation conditions. The numerical model is used through several series of simulations carried out using varied working condition to explore possible relationships between temperature distribution and thermal deformation characteristics to select the most appropriate temperature sensitive points that will be considered for building an empirical prediction model for thermal errors as function of MT thermal state. Validation tests achieved using an artificial neural network based simplified model confirmed the efficiency of the proposed temperature sensitive points allowing the prediction of the thermally induced errors with an accuracy greater than 90%.
基金supported by National Natural Science Foundation of China(Grant Nos. 50775190No.51275425)+2 种基金Spring Sunshine Plan of Ministry of Education of China(Grant No. 10202258)Talent Introduction of Xihua UniversityChina(Grant No. Z1220217)
文摘The influences of machining and misalignment errors play a very critical role in the performance of the anti-backlash double-roller enveloping hourglass worm gear(ADEHWG).However,a corresponding efficient method for eliminating or reducing these errors on the tooth profile of the ADEHWG is seldom reported.The gear engagement equation and tooth profile equation for considering six different errors that could arise from the machining and gear misalignment are derived from the theories of differential geometry and gear meshing.Also,the tooth contact analysis(TCA) is used to systematically investigate the influence of the machining and misalignment errors on the contact curves and the tooth profile by means of numerical analysis and three-dimensional solid modeling.The research results show that vertical angular misalignment of the worm wheel(Δβ) has the strongest influences while the tooth angle error(Δα) has the weakest influences on the contact curves and the tooth profile.A novel efficient approach is proposed and used to minimize the effect of the errors in manufacturing by changing the radius of the grinding wheel and the approaching point of contact.The results from the TCA and the experiment demonstrate that this tooth profile design modification method can indeed reduce the machining and misalignment errors.This modification design method is helpful in understanding the manufacturing technology of the ADEHWG.
基金supported by National Natural Science Foundation of China (Grant No. 51075198)Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2010479)+2 种基金Innovation Research of Nanjing Institute of Technology, China (Grant No. CKJ20100008)Jiangsu Provincial Foundation of 333 Talents Engineering of ChinaJiangsu Provincial Foundation of Six Talented Peak of China
文摘Straightness error is an important parameter in measuring high-precision shafts. New generation geometrical product speeifieation(GPS) requires the measurement uncertainty characterizing the reliability of the results should be given together when the measurement result is given. Nowadays most researches on straightness focus on error calculation and only several research projects evaluate the measurement uncertainty based on "The Guide to the Expression of Uncertainty in Measurement(GUM)". In order to compute spatial straightness error(SSE) accurately and rapidly and overcome the limitations of GUM, a quasi particle swarm optimization(QPSO) is proposed to solve the minimum zone SSE and Monte Carlo Method(MCM) is developed to estimate the measurement uncertainty. The mathematical model of minimum zone SSE is formulated. In QPSO quasi-random sequences are applied to the generation of the initial position and velocity of particles and their velocities are modified by the constriction factor approach. The flow of measurement uncertainty evaluation based on MCM is proposed, where the heart is repeatedly sampling from the probability density function(PDF) for every input quantity and evaluating the model in each case. The minimum zone SSE of a shaft measured on a Coordinate Measuring Machine(CMM) is calculated by QPSO and the measurement uncertainty is evaluated by MCM on the basis of analyzing the uncertainty contributors. The results show that the uncertainty directly influences the product judgment result. Therefore it is scientific and reasonable to consider the influence of the uncertainty in judging whether the parts are accepted or rejected, especially for those located in the uncertainty zone. The proposed method is especially suitable when the PDF of the measurand cannot adequately be approximated by a Gaussian distribution or a scaled and shifted t-distribution and the measurement model is non-linear.
文摘A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.
基金National Natural Science Foundation under Grant No. 51179093National Basic Research Program of China under Grant No. 2011CB013602Program for New Century Excellent Talents in University under Grant No.NCET-10-0531
文摘A third-order correction was recently suggested to improve the accuracy of the half-power bandwidth method in estimating the damping of single DOF systems.This paper analyzes the accuracy of the half-power bandwidth method with the third-order correction in damping estimation for multi-DOF linear systems.Damping ratios in a two-DOF linear system are estimated using its displacement and acceleration frequency response curves,respectively.A wide range of important parameters that characterize the shape of these response curves are taken into account.Results show that the third-order correction may greatly improve the accuracy of the half-power bandwidth method in estimating damping in a two-DOF system.In spite of this,the half-power bandwidth method may significantly overestimate the damping ratios of two-DOF systems in some cases.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金supported by the National Natural Science Foundation of China(No.42174011 and No.41874001).
文摘To solve the complex weight matrix derivative problem when using the weighted least squares method to estimate the parameters of the mixed additive and multiplicative random error model(MAM error model),we use an improved artificial bee colony algorithm without derivative and the bootstrap method to estimate the parameters and evaluate the accuracy of MAM error model.The improved artificial bee colony algorithm can update individuals in multiple dimensions and improve the cooperation ability between individuals by constructing a new search equation based on the idea of quasi-affine transformation.The experimental results show that based on the weighted least squares criterion,the algorithm can get the results consistent with the weighted least squares method without multiple formula derivation.The parameter estimation and accuracy evaluation method based on the bootstrap method can get better parameter estimation and more reasonable accuracy information than existing methods,which provides a new idea for the theory of parameter estimation and accuracy evaluation of the MAM error model.