期刊文献+
共找到265篇文章
< 1 2 14 >
每页显示 20 50 100
Impacts of Future Changes in Heavy Precipitation and Extreme Drought on the Economy over South China and Indochina 被引量:1
1
作者 Bin TANG Wenting HU +4 位作者 Anmin DUAN Yimin LIU Wen BAO Yue XIN Xianyi YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1184-1200,I0022-I0034,共30页
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut... Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region. 展开更多
关键词 CMIP6 heavy precipitation extreme drought south china inDOchina economic impact
下载PDF
Differences in Precipitation and Related Wind Dynamics and Moisture and Heat Features in Separate Areas of the South China Sea before and after Summer Monsoon Onset
2
作者 Chunyan ZHANG Donghai WANG +3 位作者 Kaifeng ZHANG Wanwen HE Yanping ZHENG Yan XU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1643-1660,共18页
Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different area... Using surface and balloon-sounding measurements, satellite retrievals, and ERA5 reanalysis during 2011–20, this study compares the precipitation and related wind dynamics, moisture and heat features in different areas of the South China Sea(SCS) before and after SCS summer monsoon onset(SCSSMO). The rainy sea around Dongsha(hereafter simply referred to as Dongsha) near the north coast, and the rainless sea around Xisha(hereafter simply referred to as Xisha) in the western SCS, are selected as two typical research subregions. It is found that Dongsha, rather than Xisha, has an earlier and greater increase in precipitation after SCSSMO under the combined effect of strong low-level southwesterly winds, coastal terrain blocking and lifting, and northern cold air. When the 950-h Pa southwesterly winds enhance and advance northward, accompanied by strengthened moisture flux, there is a strong convergence of wind and moisture in Dongsha due to a sudden deceleration and rear-end collision of wind by coastal terrain blocking. Moist and warm advection over Dongsha enhances early and deepens up to 200 h Pa in association with the strengthened upward motion after SCSSMO, thereby providing ample moisture and heat to form strong precipitation. However, when the 950-h Pa southwesterly winds weaken and retreat southward, Xisha is located in a wind-break area where strong convergence and upward motion centers move in. The vertical moistening and heating by advection in Xisha enhance later and appear far weaker compared to that in Dongsha, consistent with later and weaker precipitation. 展开更多
关键词 Dongsha Xisha south china Sea summer monsoon onset precipitation wind dynamics MOISTURE HEAT
下载PDF
Causes of the Extreme Hot Midsummer in Central and South China during 2017:Role of the Western Tropical Pacific Warming 被引量:11
3
作者 Ruidan CHEN Zhiping WEN +1 位作者 Riyu LU Chunzai WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第5期465-478,共14页
This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-ext... This study investigates why an extreme hot midsummer occurred in Central and South China(CSC) during 2017. It is shown that the western North Pacific subtropical high(WNPSH) was abnormally intensified and westward-extending,resulting in anomalous high pressure and consequent extreme heat over CSC. The abnormal WNPSH was favored by the warming of the western tropical Pacific(WTP), which was unrelated to ENSO and manifested its own individual effect.The WTP warming enhanced the convection in-situ and led to anomalous high pressure over CSC via a local meridional circulation. The influence of the WTP was confirmed by CAM4 model experiments. A comparison between the 2017 midsummer and 2010 midsummer(with a stronger WNPSH but weaker extreme heat) indicated that the influence of the WNPSH on extreme heat can be modulated by the associated precipitation in the northwestern flank.The role of the WTP was verified by regression analyses on the interannual variation of the WTP sea surface temperature anomaly(SSTA). On the other hand, the WTP has undergone prominent warming during the past few decades, resulting from decadal to long-term changes and favoring extreme warm conditions. Through a mechanism similar to the interannual variation, the decadal to long-term changes have reinforced the influence of WTP warming on the temperature over CSC,contributing to the more frequent hot midsummers recently. It is estimated that more than 50% of the temperature anomaly over CSC in the 2017 midsummer was due to the WTP warming, and 40% was related to the decadal to long-term changes of the WTP SSTA. 展开更多
关键词 HOT midsummer CENTRAL and south china western tropical Pacific DECADAL to long-term changes
下载PDF
Microphysical Characteristics of Precipitation during Pre-monsoon,Monsoon, and Post-monsoon Periods over the South China Sea 被引量:9
4
作者 Qingwei ZENG Yun ZHANG +5 位作者 Hengchi LEI Yanqiong XIE Taichang GAO Lifeng ZHANG Chunming WANG Yanbin HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第10期1103-1120,共18页
Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is d... Raindrop size distribution (RSD) characteristics over the South China Sea (SCS) are examined with onboard Parsivel disdrometer measurements collected during marine surveys from 2012 to 2016. The observed rainfall is divided into premonsoon, monsoon, and post-monsoon periods based on the different large-scale circumstances. In addition to disdrometer data, sounding observation, FY-2E satellite, SPRINTARS (Spectral Radiation-Transport Model for Aerosol Species), and NCEP reanalysis datasets are used to illustrate the dynamical and microphysical characteristics associated with the rainfall in different periods. Significant variations have been observed in respect of raindrops among the three periods. Intercomparison reveals that small drops (D < 1 mm) are prevalent during pre-monsoon precipitation, whereas medium drops (1?3 mm) are predominant in monsoon precipitation. Overall, the post-monsoon precipitation is characterized by the least concentration of raindrops among the three periods. But, several large raindrops could also occur due to severe convective precipitation events in this period. Classification of the precipitation into stratiform and convective regimes shows that the lg(Nw) value of convective rainfall is the largest (smallest) in the pre-monsoon (post-monsoon) period, whereas the Dm value is the smallest (largest) in the pre-monsoon (post-monsoon) period. An inversion relationship between the coefficient A and the exponential b of the Z?R relationships for precipitation during the three periods is found. Empirical relations between Dm and the radar reflectivity factors at Ku and Ka bands are also derived to improve the rainfall retrieval algorithms over the SCS. Furthermore, the possible causative mechanisms for the significant RSD variability in different periods are also discussed with respect to warm and cold rain processes, raindrop evaporation, convective activities, and other meteorological factors. 展开更多
关键词 precipitation RAinDROP size distribution south china Sea MONSOON period STRATIFORM and convective cloud
下载PDF
Analysis of the Role Played by Circulation in the Persistent Precipitation over South China in June 2010 被引量:12
5
作者 远芳 陈文 周文 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第4期769-781,共13页
South China (SC) experienced persistent heavy rain in June 2010. The climatic anomalies and related mechanism are analyzed in this study. Results show that the large-scale circulation pattern favorable for precipita... South China (SC) experienced persistent heavy rain in June 2010. The climatic anomalies and related mechanism are analyzed in this study. Results show that the large-scale circulation pattern favorable for precipitation was maintained. In the upper level, the South Asian High and westerly jet stream provided a divergent circulation over SC. In the middle and low levels, an anomalous strong subtropical high (STH) extended to the South China Sea. The southwesterly monsoon flow along the northwest flank of the STH transported abundant water vapor from the western North Pacific, the Bay of Bengal, and the South China Sea to SC. The precipitation can be classified into two types: the West Siberia low (WSL)-induced low-level cyclone mode, and the STH-induced low-level jet mode. STH and WSL indices are defined to estimate the influence of these two systems, respectively. Analysis shows that both are critical for precipitation, but their respective contributions differ from year to year. In 2010, both were important factors for the heavy rainfall in June. 展开更多
关键词 south china precipitation CIRCULATION the subtropical high the west Siberia low
下载PDF
Precipitation Microphysical Processes in the Inner Rainband of Tropical Cyclone Kajiki (2019) over the South China Sea Revealed by Polarimetric Radar 被引量:6
6
作者 Hepeng ZHENG Yun ZHANG +2 位作者 Lifeng ZHANG Hengchi LEI Zuhang WU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第1期65-80,共16页
Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone(TC)Kajiki(2019)in the South Ch... Polarimetric radar and 2D video disdrometer observations provide new insights into the precipitation microphysical processes and characteristics in the inner rainband of tropical cyclone(TC)Kajiki(2019)in the South China Sea for the first time.The precipitation of Kajiki is dominated by high concentrations and small(<3 mm)raindrops,which contribute more than 98%to the total precipitation.The average mass-weighted mean diameter and logarithmic normalized intercept are 1.49 mm and 4.47,respectively,indicating a larger mean diameter and a lower concentration compared to the TCs making landfall in eastern China.The ice processes of the inner rainband are dramatically different among different stages.The riming process is dominant during the mature stage,while during the decay stage the aggregation process is dominant.The vertical profiles of the polarimetric radar variables together with ice and liquid water contents in the convective region indicate that the formation of precipitation is dominated by warm-rain processes.Large raindrops collect cloud droplets and other raindrops,causing reflectivity,differential reflectivity,and specific differential phase to increase with decreasing height.That is,accretion and coalescence play a critical role in the formation of heavy rainfall.The melting of different particles generated by the ice process has a great influence on the initial raindrop size distribution(DSD)to further affect the warm-rain processes.The DSD above heavy rain with the effect of graupel has a wider spectral width than the region without the effect of graupel. 展开更多
关键词 south china Sea cloud precipitation microphysics polarimetric radar tropical cyclone rainband
下载PDF
ECHAM5-Simulated Impacts of Two Types of El Nio on the Winter Precipitation Anomalies in South China 被引量:8
7
作者 SU Jing-Zhi ZHANG Ren-He ZHU Cong-Wen 《Atmospheric and Oceanic Science Letters》 CSCD 2013年第5期360-364,共5页
The authors used an atmospheric general circulation model (AGCM) of European Centre Hamburg Model (ECHAM5.4) and investigated the possible impacts of eastern Pacific (EP) and central Pacific (CP) El Ni(n)o o... The authors used an atmospheric general circulation model (AGCM) of European Centre Hamburg Model (ECHAM5.4) and investigated the possible impacts of eastern Pacific (EP) and central Pacific (CP) El Ni(n)o on the winter precipitation anomalies in South China.A composite analysis suggested much more rainfall during the mature phase of EP El Ni(n)o than in the case of CP El Ni(n)o,and their corresponding observed wet centers to be located in the southeast coast and the region to the south of the Yangtze River,respectively.Results obtained on the basis of model-sensitive run imply that the modelsimulated rainfall anomalies agree well with the observation,and the magnitude of simulated rainfall anomalies were found to be reduced when the amplitude of sea surface temperature anomaly (SSTA) forcing of EP and CP El Ni(n)o was cut down.These results imply that the rainfall anomaly in South China is very sensitive not only to the type of El Ni(n)o but also to its intensity. 展开更多
关键词 eastern/central Pacific El Ni(n)o precipitation ECHAM5 south china
下载PDF
THE VARIATION OF EVAPORATION OVER SOUTH CHINA AND ITS RELATIONSHIPS TO PRECIPITATION 被引量:2
8
作者 简茂球 乔云亭 +1 位作者 黄威 温之平 《Journal of Tropical Meteorology》 SCIE 2011年第3期285-292,共8页
The evaporation rate over South China is estimated based on the Climate Prediction Center Merged Analysis of Precipitation(CMAP)data and the NCEP/DOE reanalysis II data from 1979 to 2007. The temporal variation of eva... The evaporation rate over South China is estimated based on the Climate Prediction Center Merged Analysis of Precipitation(CMAP)data and the NCEP/DOE reanalysis II data from 1979 to 2007. The temporal variation of evaporation over South China and its relationship to precipitation are discussed. Climatologically,the evaporation rate over South China is the largest in July and smallest in March.In spring and summer,the evaporation rate is approximately one half of the precipitation rate.However,the evaporation rate is approximately equal to the precipitation rate in fall and winter.The year-to-year variation of the evaporation rate over South China is quite in phase with that of the precipitation rate in the period from February to May but out of phase with that of the precipitation rate in early winter.Over South China there is a pronounced decreasing trend in the evaporation in colder seasons and a positive correlation between the evaporation variation and the rainfall variation in spring.In summer,the abnormality of rainfall over South China is closely related to the anomalous evaporation over the northeastern part of the South China Sea and its eastern vicinity.In winter,the rainfall variation in South China has a close linkage with the evaporation variation in a belt area covering the eastern Arabian Sea,the Bay of Bengal,the southeastern periphery of the Plateau,the southern part of South China Sea and the central part of Indonesia. 展开更多
关键词 EVAPORATION precipitation temporal variation south china
下载PDF
INFLUENCES OF LOW-FREQUENCY MOISTURE TRANSPORTATION ON LOW FREQUENCY PRECIPITATION ANOMALIES IN THE ANNUALLY FIRST RAINY SEASON OF SOUTH CHINA IN 2010 被引量:1
9
作者 李丽平 许冠宇 +1 位作者 倪碧 柳艳菊 《Journal of Tropical Meteorology》 SCIE 2016年第S1期46-56,共11页
85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the p... 85-station daily precipitation data from 1961-2010 provided by the National Meteorological Information Center and the NCEP/NCAR 2010 daily reanalysis data are used to investigate the low-frequency variability on the precipitation of the first rain season and its relationships with moisture transport in South China,and channels of low-frequency water vapor transport and sources of low-frequency precipitation are revealed.The annually first raining season precipitation in 2010 is mainly controlled by 10-20 d and 30-60 d oscillation.The rainfall is more(interrupted) when the two low-frequency components are in the same peak(valley) phase,and the rainfall is less when they are superposed in the inverse phase.The 10-20 d low-frequency component of the moisture transport is more active than the 30-60 d.The10-20 d water vapor sources lie in the South India Ocean near 30° S,the area between Sumatra and Kalimantan Island(the southwest source),and the equatorial middle Pacific region(the southeast source),and there are corresponding southwest and southeast moisture transport channels.By using the characteristics of 10-20 d water vapor transport anomalous circulation,the corresponding low-frequency precipitation can be predicted 6 d ahead. 展开更多
关键词 LOW-FREQUENCY precipitation characteristics wavelet analysis LOW-FREQUENCY vapor sources annually annually FIRST RAinY SEASON of south china
下载PDF
SPATIO-TEMPORAL VARIATION CHARACTERISTICS OF EXTREMELY HEAVY PRECIPITATION FREQUENCY OVER SOUTH CHINA IN THE LAST 50 YEARS 被引量:2
10
作者 陆虹 陈思蓉 +2 位作者 郭媛 何慧 徐圣璇 《Journal of Tropical Meteorology》 SCIE 2014年第3期279-288,共10页
This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 200... This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests. 展开更多
关键词 south china frequency of extremely heavy precipitation events spatio-temporal characteristics abrupt change
下载PDF
A STUDY ON THE PRECIPITATION CHARACTERISTICS OVER THE SOUTH CHINA SEA BEFORE AND AFTER THE MONSOON ONSET 被引量:1
11
作者 李耀东 宋明坤 胡亮 《Journal of Tropical Meteorology》 SCIE 2012年第1期1-10,共10页
This paper presents a study on the temporal and spatial variations of the precipitation over the area of the South China Sea (SCS) during the monsoon onset period. The data used are from the Tropical Rainfall Measurin... This paper presents a study on the temporal and spatial variations of the precipitation over the area of the South China Sea (SCS) during the monsoon onset period. The data used are from the Tropical Rainfall Measuring Mission (TRMM) observations between April and June over the nine years from 1998 to 2006. This study focuses on the central and northern part of South China Sea (110-120°E, 10-20°N). Based on the observations, the 27th pentad is selected as the occurrence time of the SCS monsoon onset. The conclusions are as follows. (1) After the monsoon onset, the specific area, defined as the ratio of the number of pixels with certain type of precipitation to the number of total pixels, extends significantly for both convective and stratiform rain, with the latter having a larger magnitude. The specific rainfall, defined as the ratio of the amount of certain type of precipitation to the total amount of precipitation, decreases for convective rain and increases for stratiform rain. (2) Results also show significant increase in heavy rain and decrease in light rain after the monsoon onset. (3) Changes are also observed in the rainfall horizontal distributions over the SCS before and after the monsoon onset, manifested by the relocation of precipitation minima for both convective and stratiform rain. (4) After the monsoon onset, the variability in characteristics of precipitation vertical structure increases significantly, leading to more latent heat release and consequently deeper convection. Meanwhile, the bright-band altitude of stratiform precipitation is also elevated. 展开更多
关键词 TRMM south china Sea monsoon onset precipitation
下载PDF
Temporal-spatial Variation Characteristics of the Extreme Precipitation Days over South China from 1961 to 2010 被引量:1
12
作者 HE Hui LU Hong CHEN Si-rong 《Meteorological and Environmental Research》 2012年第3期1-5,8,共6页
[ Objective] The research aimed to analyze temporal-spatial variation characteristics of the extreme precipitation days over South China from 1961 to 2010. [ Method] Based on the daily precipitation data in meteorolog... [ Objective] The research aimed to analyze temporal-spatial variation characteristics of the extreme precipitation days over South China from 1961 to 2010. [ Method] Based on the daily precipitation data in meteorological stations over South China, extreme precipitation thresholds were determined according to the percentiles distribution for different stations. Temporal-spatial variation characteristics of the extreme precipitation days over South China were studied by the methods of fuzzy clustering, trend coefficient, wavelet analysis and cross spectrum analysis, etc. [ Re- suit] Four sub-regions were identified over South China. They were respectively Nanling area, west Guangxi area, Coast area and Hainan area. Occurrence seasons of the extreme precipitations in each sub-region were significantly different. Extreme precipitation clays in four sub-regions all had increase trends, and those of Nanling area and Coast area were significant. From wavelet analysis and cress spectrum analysis, there were significant periodic variation characteristics. Extreme precipitation days in each sub-region all had significant same-phase evolution trends at the peri- od of 2 -5 years, but backward time length was different. [ Conclusion] The research provided background materials for forecast and influence as- sessment of the extremely heavy precipitation over South China. 展开更多
关键词 south china Extreme precipitation days Temporal-spatial variation characteristics Cross spectrum analysis china
下载PDF
THE TIMING OF SOUTH-ASIAN HIGH ESTABLISHMENT AND ITS RELATION TO TROPICAL ASIAN SUMMER MONSOON AND PRECIPITATION OVER EAST-CENTRAL CHINA IN SUMMER 被引量:3
13
作者 王黎娟 郭帅宏 葛静 《Journal of Tropical Meteorology》 SCIE 2016年第2期136-144,共9页
The timing of the South Asian High(SAH) establishment over the Indochina Peninsula(IP) from April to May and its relations to the setup of the subsequent tropical Asian summer monsoon and precipitation over eastern-ce... The timing of the South Asian High(SAH) establishment over the Indochina Peninsula(IP) from April to May and its relations to the setup of the subsequent tropical Asian summer monsoon and precipitation over eastern-central China in summer are investigated by using NCEP/NCAR daily reanalysis data,outgoing longwave radiation(OLR)data and the daily precipitation data from 753 weather stations in China.It is found that the transitions of the zonal wind vertical shear and convection establishment over tropical Asia are earlier(later) in the years of early(late) establishment of SAH.In the lower troposphere,anti-cyclonic(cyclonic) anomaly circulation dominates the equatorial Indian Ocean.Correspondingly,the tropical Asian summer monsoon establishes earlier(later).Furthermore,the atmospheric circulation and the water vapor transport in the years of advanced SAH establishment are significantly different from the delayed years in Asia in summer.Out-of-phase distribution of precipitation in eastern-central China will appear with a weak(strong) SAH and western Pacific subtropical high,strong(weak) ascending motion in the area south of Yangtze River but weak(strong) ascending motion in the area north of it,and cyclonic(anti-cyclonic) water vapor flux anomaly circulation from the eastern-central China to western Pacific.Accordingly,the timing of the SAH establishment at the upper levels of IP is indicative of the subsequent onset of the tropical Asian summer monsoon and the flood-drought pattern over eastern-central China in summer. 展开更多
关键词 south-Asian High indochina Peninsula tropical Asian summer monsoon precipitation over eastern-central china in summer
下载PDF
THE RELATIONSHIP BETWEEN EXTREME PRECIPITATION ANOMALY IN SOUTH OF CHINA AND ATMOSPHERIC CIRCULATION IN THE SOUTHERN HEMISPHERE
14
作者 闵屾 钱永甫 《Journal of Tropical Meteorology》 SCIE 2010年第1期35-41,共7页
Based on the daily rainfall datasets of 743 stations in China and the NCEP/NCAR monthly reanalysis data during the period of 1960-2003,the relationship between the anomalous extreme precipitation(EP) in the south of C... Based on the daily rainfall datasets of 743 stations in China and the NCEP/NCAR monthly reanalysis data during the period of 1960-2003,the relationship between the anomalous extreme precipitation(EP) in the south of China and atmospheric circulation in the Southern Hemisphere is analyzed.The phenomenon of opposite changes in the sea level pressure and geopotential height anomalies over the Ross Sea and New Zealand is defined as RN,and the index which describes this phenomenon is expressed as RNI.The results show that the RN has barotropic structure and the RNI in May is closely related to the June EP amount in the south of China(SCEP) and the East Asian summer monsoon(EASM).The positive correlations between the May RNI at each level and the June SCEP are significant,and the related simultaneous correlations between the RNI and the June SCEP are also positive,suggesting that the potential impact of RN on the SCEP persists from May to June.Therefore,RN in May can be taken as one of the predictive factors for the June SCEP.Furthermore,one possible physical mechanism by which the RN affects the June SCEP is a barotropic meridional teleconnection emanating from the Southern Hemisphere to the western North Pacific. 展开更多
关键词 south of china extreme precipitation ANOMALY Ross Sea-New Zealand
下载PDF
Seasonal Forecasts of Precipitation during the First Rainy Season in South China Based on NUIST-CFS1.0
15
作者 Sinong LI Huiping YAN Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1895-1910,共16页
Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy ... Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy season(FRS,i.e.,April–June)over South China from 1982 to 2020 based on the global real-time Climate Forecast System of Nanjing University of Information Science and Technology(NUIST-CFS1.0,previously known as SINTEX-F).The potential predictability and the practical forecast skill of NUIST-CFS1.0 for FRS precipitation remain low in general.But NUIST-CFS1.0 still performs better than the average of nine international models in terms of correlation coefficient skill in predicting the interannual precipitation anomaly and its related circulation index.NUIST-CFS1.0 captures the anomalous Philippines anticyclone,which transports moisture and heat northward to South China,favoring more precipitation in South China during the FRS.By examining the correlations between sea surface temperature(SST)and FRS precipitation and the Philippines anticyclone,we find that the model reasonably captures SST-associated precipitation and circulation anomalies,which partly explains the predictability of FRS precipitation.A dynamical downscaling model with 30-km resolution forced by the large-scale circulations of the NUIST-CFS1.0 predictions could improve forecasts of the climatological states and extreme precipitation events.Our results also reveal interesting interdecadal changes in the predictive skill for FRS precipitation in South China based on the NUIST-CFS1.0 hindcasts.These results help improve the understanding and forecasts for FRS precipitation in South China. 展开更多
关键词 seasonal forecast of precipitation first rainy season in south china global climate model prediction
下载PDF
Moisture Transport and Associated Background Circulation for the Regional Extreme Precipitation Events over South China in Recent 40 Years
16
作者 杨雯婷 傅慎明 +3 位作者 孙建华 汪汇洁 付亚男 曾垂宽 《Journal of Tropical Meteorology》 SCIE 2023年第1期101-114,共14页
Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture tran... Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture transport and their associated background circulations for four types of regional extreme precipitation events(REPEs) over south China. Main findings are shown as follow.(i) The wind that transported moisture for the REPEs over south China featured a notable diurnal variation, which was consistent with the variations of the precipitation.(ii) Four types of REPEs could be determined, among which the southwest type(SWT) and the southeast type(SET) accounted for ~92%and ~5.7%, respectively, ranking the first and second, respectively.(iii) Trajectory analyses showed that the air particles of the SWT-REPEs had the largest specific humidity and experienced the most intense ascending motion, and therefore their precipitation was the strongest among the four types.(iv) South China was dominated by notable moisture flux convergence for the four types of REPEs, but their moisture transport was controlled by different flow paths.(v)Composite analyses indicated that the background circulation of the four types of REPEs showed different features,particularly for the intensity, location and coverage of a western Pacific subtropical high. For the SWT-REPEs, their moisture transport was mainly driven by a lower-tropospheric strong southwesterly wind band in the low-latitude regions. Air particles for this type of REPEs mainly passed over the Indochina Peninsula and South China Sea. For the SET-REPEs, their moisture transport was mainly steered by a strong low-tropospheric southeasterly wind northeast of a transversal trough. Air particles mainly passed over the South China Sea for this type of REPEs. 展开更多
关键词 regional extreme precipitation event south china moisture transport composite analysis backward tracking analyses
下载PDF
COMPARISON STUDY ON THE INTRASEASONAL VARIATIONS IN CIRCULATIONS AND PRECIPITATION MODULATED BY THE TROPICAL CYCLOGENESIS OVER SOUTH CHINA SEA-WESTERN PACIFIC DURING GUANGDONG FLOODING PERIOD
17
作者 李春晖 万齐林 +2 位作者 郑彬 谷德军 林爱兰 《Journal of Tropical Meteorology》 SCIE 2011年第4期363-374,共12页
Based on tropical cyclone datasets from Shanghai Typhoon Institute of China Meteorological Administration,the National Centers for Environmental Prediction (NCEP,USA) reanalysis data and the rainfall records from 743 ... Based on tropical cyclone datasets from Shanghai Typhoon Institute of China Meteorological Administration,the National Centers for Environmental Prediction (NCEP,USA) reanalysis data and the rainfall records from 743 stations in China,the impacts of cyclogenesis number over the South China Sea and the western Pacific are studied on the 30-60-day oscillations in the precipitation of Guangdong during the flooding period.The year with more-than-normal (less-than-normal) tropical cyclogenesis is defined as a 'high year' ('low year').In light of the irregular periodic oscillations,the method used to construct the composite life cycle is based on nine consecutive phases in each of the cycles.Phases 1,3,5,and 7 correspond to,respectively,the time when precipitation anomalies reach theminimum,a positive transition (negative-turning-to-positive) phase,the maximum,and a negative transition phase.The results showed that the precipitation of the 30-60-day oscillations is associated with the interaction between a well-organized eastward propagation system from the Arabian Sea/Bay of Bengal and a westward-propagating system (with cyclonic and anticyclonic anomalies in the northwest-southeast direction) from the South China Sea to western Pacific during the high years,whereas the precipitation is affected during a low year by the circulation over the South China Sea and western Pacific (with cyclonic and anticyclonic anomalies in the northeast-southwest direction).During the high year,the warm and wet air mass from the ocean to the west and south are transported to Guangdong by westerly anomalies and an enclosed latitudinal cell,which ascends in the Northern Hemisphere low latitudes and descends in the Southern Hemisphere low latitudes.During the low year,the warm and wet air mass from the ocean to the south is transported to Guangdong by southwesterly wind anomalies and local ascending movements.Because the kinetic energy,westerly,easterly shift,vertical velocity and vapor transportation averaged over (109-119° E,10-20° N) is stronger in high years than those in low years,the precipitation of the 30-60-day oscillations in Guangdong is higher in high years than that in low years. 展开更多
关键词 cyclogenesis number over the south china Sea and western Pacific precipitation in Guangdong province 30-60-day oscillation
下载PDF
Interannual Variability of Autumn Precipitation over South China and its Relation to Atmospheric Circulation and SST Anomalies 被引量:23
18
作者 牛宁 李建平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第1期117-125,共9页
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and th... The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH. 展开更多
关键词 interannual variability autumn precipitation south china circulation anomaly sea surfacetemperature
下载PDF
Interdecadal Change in Extreme Precipitation over South China and Its Mechanism 被引量:20
19
作者 宁亮 钱永甫 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期109-118,共10页
Based on the daily precipitation data taken from 17 stations over South China during the period of 1961 2003, a sudden change in summer extreme precipitation events over South China in the early 1990s along with the p... Based on the daily precipitation data taken from 17 stations over South China during the period of 1961 2003, a sudden change in summer extreme precipitation events over South China in the early 1990s along with the possible mechanism connected with the anomalies of the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula are examined. The results show that both the annual and summer extreme precipitation events have obvious interdecadal variations and have increased significantly since the early 1990s. Moreover, the latent heat flux over the South China Sea and the sensible heat flux over the Indochina peninsula also have obvious interdecadal variations consistent with that of the extreme precipitation, and influence different months' extreme precipitation, respectively. Their effects are achieved by the interdecadal increases of the strengthening convection over South China through the South China Sea Summer Monsoon. 展开更多
关键词 extreme precipitation interdecadal change south china sensible heat flux latent heat flux
下载PDF
Comparison of summer chlorophyll a concentration in the South China Sea and the Arabian Sea using remote sensing data 被引量:1
20
作者 YAO Jinglong YANG Lei +5 位作者 SHU Yeqiang ZENG Lili SHI Rui CHEN Ju ZU Tingting CHEN Chuqun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第11期61-67,共7页
The South China Sea(SCS) and the Arabian Sea(AS) are both located roughly in the north tropical zone with a range of similar latitude(0°–24°N). Monsoon winds play similar roles in the upper oceanic ci... The South China Sea(SCS) and the Arabian Sea(AS) are both located roughly in the north tropical zone with a range of similar latitude(0°–24°N). Monsoon winds play similar roles in the upper oceanic circulations of the both seas. But the distinct patterns of chlorophyll a(Chl a) concentration are observed between the SCS and the AS.The Chl a concentration in the SCS is generally lower than that in the AS in summer(June–August); the summer Chl a concentration in the AS shows stronger interannual variation, compared with that in the SCS; Moderate resolution imaging spectroradiometer(MODIS)-derived data present higher atmospheric aerosol deposition and stronger wind speed in the AS. And it has also been found that good correlations exist between the index of the dust precipitation indicated by aerosol optical thickness(AOT) and the Chl a concentration, or between wind and Chl a concentration. These imply that the wind and the dust precipitation bring more nutrients into the AS from the sky, the sub-layer or coast regions, inducing higher Chl a concentration. The results indicate that the wind velocity and the dust precipitation can play important roles in the Chl a concentration for the AS and the SCS in summer. However aerosol impact is weak on the biological productivity in the west SCS and wind-induced upwelling is the main source. 展开更多
关键词 chlorophyll a dust precipitation Arabian Sea south china Sea NUTRIENTS
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部