With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement ...With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement slab and there is a greater resistance to impact, vibration and overloading. This paper discusses the major design considerations necessary in the successful construction of prestressed concrete pavements and presents a design procedure developed to predict the compressive stress due to prestressing in the pavements at early stage, during service and after cracking. Variation in the approach for repetitive and nonrepetitive loads is clearly distinguished. Check on the recovery after cracking for overloading in prestressed pavements is also needed. Finally, a design example is illustrated the application of the approach developed.展开更多
Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo...Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.展开更多
The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavement...The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.展开更多
The mix designs and specimen preparation for the dry process and wet process of sulfur rubber conerete ( SRC ) were investigated. The compressive strength, corrosion-resistance and toughness were studied and discuss...The mix designs and specimen preparation for the dry process and wet process of sulfur rubber conerete ( SRC ) were investigated. The compressive strength, corrosion-resistance and toughness were studied and discussed. The results show that SRC is corrosion-resistanet. Although the compressive strength of SRC decreases with inereasing rubber content, the toughness increases instead . Adding micro-filler will improve the compressive strength of SRC . There is a threshold value for the sulfur content, at which the compressive strength and the workability of SRC reach an optimum balance . The bond between rubber particles and surrounding sulfur is strong due to the vulcanization process that generates cross-link through S-C bonds.展开更多
In order to seek the creep change rules of ased concrete with two different mix proportions, the test is carried out in the situation which is similar to that of the creation of concrete C60, and the creep test on the...In order to seek the creep change rules of ased concrete with two different mix proportions, the test is carried out in the situation which is similar to that of the creation of concrete C60, and the creep test on the concrete of two different mix proportions is done under standard lab. Based on creep test of the high performance concrete, the creep degree and the creep coefficient are obtained. By comparing with the wide-adopted models of AC1209 (1997) and CEB- FIP MC90, it is found that the test result is good at its regularity and the research results offer reference to the calculating analysis of the on-the-spot experimental data.展开更多
Concrete is one of the most consumable construction materials on the earth.The concrete constitutes cement,sand,gravel,water and/or additives in definite proportions.The proportions of raw materials of concrete are de...Concrete is one of the most consumable construction materials on the earth.The concrete constitutes cement,sand,gravel,water and/or additives in definite proportions.The proportions of raw materials of concrete are decided by the concrete mix design.The mix design depends on the various factors.For mix design,most of the countries have their own specifications.In the present study,standard guidelines of India,Britain and America for the concrete mix design have been discussed.The concrete grades of M25,M35 and M45 were designed and compared.Indian Standards were also compared.It was concluded that a new revised version of Indian Standard code has the lowest value of water/cement ratio and highest quantity of cement as compared to other standards.展开更多
A recycled aggregate(RA)was prepared by crushing and sieving demolished discarded concrete pavements and was subsequently tested and analyzed to determine its various physical properties.On this basis,pervious concre...A recycled aggregate(RA)was prepared by crushing and sieving demolished discarded concrete pavements and was subsequently tested and analyzed to determine its various physical properties.On this basis,pervious concrete(PC)mix proportions were designed.Coarse RA particles with sizes of 5–10 and 10–20 mm were selected.Concrete specimens were prepared with a water–cement ratio of 0.3,an aggregate–cement ratio of 4.5,the substitute rates of RA with 0,25%,50%,75%and a single-/double-gap-graded RA mix(mass ratio of particles with sizes of 5–10 mm to particles with sizes of 10–20 mm:1:1,1:2,2:1,2:3 and 3:2).Various properties of the RA-containing PC(RPC)were determined by analyzing the compressive strength,splitting tensile strength,effective porosity,permeation coefficient and impact and abrasion resistance of the specimens.The results showed the following:The density of the RPC decreased with an increasing RA replacement ratio.The density of the RPC prepared with a double-gapgraded RA mix was lower than that prepared with a single-gap-graded RA(particle size:10–20 mm)mix.The permeation coefficient of the RPC increased with increasing porosity.The splitting tensile strength of the RPC was positively correlated with its compressive strength.The compressive strength of the RPC decreased with increasing porosity.The regression analysis showed that the impact and abrasion resistance of the RPC increased with increasing compressive strength.In addition,all of the RPC specimens met the strength and permeation requirements.This study can provide theoretical support for the application of RPC.展开更多
This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of G...This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of Grade 75 similar to 80 concrete, with or without pulverized fuel ash and/or condensed silica fume, under five different curing regimes were investigated. It is revealed that the curing conditions have significant influence on both the short term and long term strength development of the concrete and that concrete mixes of the same grade but containing different mineral admixtures show distinct favour for a curing regime. These results will be helpful for evaluating suitable curing methods for high strength concrete with different mix proportions.展开更多
Cracking in concrete occurs from volumetric instability, mechanical loading, and/or environmental attack. Compared to conventional vibrated concrete, self-consolidating concrete often has a higher susceptibility to cr...Cracking in concrete occurs from volumetric instability, mechanical loading, and/or environmental attack. Compared to conventional vibrated concrete, self-consolidating concrete often has a higher susceptibility to crack due to different mixture design, material properties and construction practices. To obtain a better understanding of self-consolidating concrete cracking behaviors for designing and constructing crack-controlled structural elements, reported current research and practices are reviewed and analyzed in this paper. It has been believed that when well designed and welt constructed, high quality self- consolidating concrete can be successfully used in various structures with cracks properly controlled.展开更多
This paper presents a comprehensive review of historical theory development and current construction practice of pavement engineering in China. Mechanical models, design guides, construction techniques, evaluation met...This paper presents a comprehensive review of historical theory development and current construction practice of pavement engineering in China. Mechanical models, design guides, construction techniques, evaluation methods and maintenance standards are elaborated for Portland cement concrete (PCC) pavements methodology among pavements of rural highways, urban roads and asphalt concrete (AC) pavements. Differences in design and airport fields are discussed based on service requirements. Lessons and experiences based on the past 20 years' construction practice and pavement performance are summarized. Current research areas in pavement engineering associated with unconventional geological and/or landscaping in China's highway construction and national strategic plan for pavement engineering are also covered.展开更多
A high-performance concrete (HPC) is required to have superior performance in various aspects such as workability,strength, durability, dimensional stability, segregation stability, and passing ability. The mix desi...A high-performance concrete (HPC) is required to have superior performance in various aspects such as workability,strength, durability, dimensional stability, segregation stability, and passing ability. The mix design of HPC is rather complicatedbecause the number of ingredients in HPC is usually more than those in conventional concrete and some of the required propertiesare conflicting with each other in the sense that improvement in one property would at the same time cause impairment of anotherproperty. However, there is still lack of understanding regarding how the various mix parameters should be optimised forachieving best overall performance. Most practitioners are still conducting mix design primarily through trial concrete mixing,which is laborious, ineffective, and often unable to timely respond to fluctuations in the properties of raw materials. To addressthese issues, the authors have been developing the packing and film thickness theories of concrete materials, in order to revamp themix design philosophy of HPC in terms of the water film thickness (WFT), paste film thickness (PFT), and mortar film thickness(MFT) in the concrete. Based on the findings from an extensive experimental programme, suitable ranges ofWFT, PFT, and MFThave been recommended.展开更多
The research presented in this paper aims to identify best practices of design and materials for concrete pavements in wet-freeze climates similar to the Michigan State. For the purposes of this paper, a best practice...The research presented in this paper aims to identify best practices of design and materials for concrete pavements in wet-freeze climates similar to the Michigan State. For the purposes of this paper, a best practice is a procedure that has been shown by field-validated research or experience to produce improved results and that is established or proposed as a standard suitable for widespread implementation. The local wet-freeze climate makes the requirements for Michigan's pavement system different from many other regions. Wetfreeze climates can result in various concrete pavement distress mechanisms such as thermally-induced cracking, freeze-thaw deterioration, accelerated cracking due to loss of support, frost heave, and material degradation. Therefore, appropriate procedures for design and material selection need to be selected to withstand high precipitation and freezing winter temperatures. Failure to take into account the climatic conditions may lead to inadequate or reduced pavement performance. However, utilizing appropriate techniques and materials could potentially improve the quality and increase the service life of the concrete pavement. Three design methods and five materials have been identified, and examples of their successful performance in wet-freeze climates are provided. In addition, the reasons that give them the superior performance in wet-freeze climates are discussed in detail.展开更多
With the resource shortage in coastal areas,the construction of concrete structures using freshwater and river sand has brought great economic and environmental costs.The use of seawater,sea sand,and coral aggregates ...With the resource shortage in coastal areas,the construction of concrete structures using freshwater and river sand has brought great economic and environmental costs.The use of seawater,sea sand,and coral aggregates in concrete mixes has become an alternative solution for coastal and marine structures,especially for offshore structures and artificial islands.In this study,378 seawater,sea sand,and coral aggregate concrete(Coral-SWSSC)specimens were prepared,and their mechanical properties were investigated comprehensively through compressive tests to explore the optimized mix design at different grades.Results showed that the mechanical properties of Coral-SWSSC were strongly correlated with the water-to-binder ratios,coastal particle gradings,and pretreatment method of coastal particles.Based on the experimental results,mix proportion designs of CoralSWSSC were proposed for concrete from C20 to C50 grades,and the failure mechanism of Coral-SWSSC at different grades was discussed according to their respective failure modes.The findings of the current study provide knowledge on the optimized design of Coral-SWSSC,which can be used to promote the application of Coral-SWSSC in offshore,marine,and ocean engineering.展开更多
The present study proposes the mix design method of Fly Ash(FA)based geopolymer concrete using Response Surface Methodology(RSM).In this method,different factors,including binder content,alkali/binder ratio,NS/NH rati...The present study proposes the mix design method of Fly Ash(FA)based geopolymer concrete using Response Surface Methodology(RSM).In this method,different factors,including binder content,alkali/binder ratio,NS/NH ratio(sodium silicate/sodium hydroxide),NH molarity,and water/solids ratio were considered for the mix design of geopolymer concrete.The 2D contour plots were used to setup the mix design method to achieve the target compressive strength.The proposed mix design method of geopolymer concrete is divided into three categories based on curing regime,specifically one ambient curing(25°C)and two heat curing(60 and 90°C).The proposed mix design method of geopolymer concrete was validated through experimentation of M30,M50,and M70 concrete mixes at all curing regimes.The observed experimental compressive strength results validate the mix design method by more than 90%of their target strength.Furthermore,the current study concluded that the required compressive strength can be achieved by varying any factor in the mix design.In addition,the factor analysis revealed that the NS/NH ratio significantly affects the compressive strength of geopolymer concrete.展开更多
Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as ...Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as the precast pavement features.The previous research indicates that:(1)both super-slab and Michigan systems are recommended with the satisfied road performance close to the cast-in-place;(2)flexible base material is suggested for the fabricated pavement for the satisfied leveling and stress distribution;(3)to prevent the voiding phenomenon of the fabricated pavement,the sand cushion course,dry mixed mortar or self-leveling mortar,and other flowable materials could be used for the secondary leveling of the base after the pavement splicing;(4)two-direction dowel bars are recommended for slab connections of the fabricated pavement,which helps to improve the load transfer capacity of the joints and enhance the durability of the fabricated pavement structure;(5)the sealing treatment of precast slab joints needs strengthening to reduce the impact of surface runoff on the base course;(6)the further research focuses are designing with functional,composite,mechanized,intelligent,lightweight,and flexible pavement slabs.Besides,pavement mechanical properties induced by temperature overlapping traffic loads need to be revealed.展开更多
文摘With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement slab and there is a greater resistance to impact, vibration and overloading. This paper discusses the major design considerations necessary in the successful construction of prestressed concrete pavements and presents a design procedure developed to predict the compressive stress due to prestressing in the pavements at early stage, during service and after cracking. Variation in the approach for repetitive and nonrepetitive loads is clearly distinguished. Check on the recovery after cracking for overloading in prestressed pavements is also needed. Finally, a design example is illustrated the application of the approach developed.
基金Funded by the National Natural Science Foundation of China(No.51278073)Prospective Joint Research Project of Jiangsu Province(No.BY2015027-23)State Key Laboratory for Geo Mechanics and Deep Underground Engineering,China University of Mining&Technology(No.SKLGDUEK1704)
文摘Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use.
基金the financial support from the University of Pittsburgh Anthony Gill Chair and the Impactful Resilient Infrastructure Science and Engineering Consortium(IRISE)at University of Pittsburgh.
文摘The American Association of State Highway and Transportation Officials Mechanistic-Empirical Pavement DesignGuide (AASHTO M-E) offers an opportunity to design more economical and sustainable high-volume rigid pavementscompared to conventional design guidelines. It is achieved through optimizing pavement structural andthickness design under specified climate and traffic conditions using advanced M-E principles, thereby minimizingeconomic costs and environmental impact. However, the implementation of AASHTO M-E design for low-volumeconcrete pavements using AASHTOWare Pavement ME Design (Pavement ME) software is often overly conservative.This is because Pavement ME specifies the minimum design thickness of concrete slab as 152.4 mm (6 in.). Thispaper introduces a novel extension of the AASHTO M-E framework for the design of low-volume joint plain concretepavements (JPCPs) without modification of Pavement ME. It utilizes multi-gene genetic programming (MGGP)-based computational models to obtain rapid solutions for JPCP damage accumulation and long-term performanceanalyses. The developed MGGP models simulate the fatigue damage and differential energy accumulations. Thispermits the prediction of transverse cracking and joint faulting for a wide range of design input parameters and axlespectrum. The developed MGGP-based models match Pavement ME-predicted cracking and faulting for rigidpavements with conventional concrete slab thicknesses and enable rational extrapolation of performance predictionfor thinner JPCPs. This paper demonstrates how the developed computational model enables sustainable lowvolumepavement design using optimized ME solutions for Pittsburgh, PA, conditions.
基金Funded by the Natural Science Foundation of China ( No.50408004)
文摘The mix designs and specimen preparation for the dry process and wet process of sulfur rubber conerete ( SRC ) were investigated. The compressive strength, corrosion-resistance and toughness were studied and discussed. The results show that SRC is corrosion-resistanet. Although the compressive strength of SRC decreases with inereasing rubber content, the toughness increases instead . Adding micro-filler will improve the compressive strength of SRC . There is a threshold value for the sulfur content, at which the compressive strength and the workability of SRC reach an optimum balance . The bond between rubber particles and surrounding sulfur is strong due to the vulcanization process that generates cross-link through S-C bonds.
文摘In order to seek the creep change rules of ased concrete with two different mix proportions, the test is carried out in the situation which is similar to that of the creation of concrete C60, and the creep test on the concrete of two different mix proportions is done under standard lab. Based on creep test of the high performance concrete, the creep degree and the creep coefficient are obtained. By comparing with the wide-adopted models of AC1209 (1997) and CEB- FIP MC90, it is found that the test result is good at its regularity and the research results offer reference to the calculating analysis of the on-the-spot experimental data.
文摘Concrete is one of the most consumable construction materials on the earth.The concrete constitutes cement,sand,gravel,water and/or additives in definite proportions.The proportions of raw materials of concrete are decided by the concrete mix design.The mix design depends on the various factors.For mix design,most of the countries have their own specifications.In the present study,standard guidelines of India,Britain and America for the concrete mix design have been discussed.The concrete grades of M25,M35 and M45 were designed and compared.Indian Standards were also compared.It was concluded that a new revised version of Indian Standard code has the lowest value of water/cement ratio and highest quantity of cement as compared to other standards.
基金This study was funded by the National key research and development program fund project(No.2018YFC0406803).
文摘A recycled aggregate(RA)was prepared by crushing and sieving demolished discarded concrete pavements and was subsequently tested and analyzed to determine its various physical properties.On this basis,pervious concrete(PC)mix proportions were designed.Coarse RA particles with sizes of 5–10 and 10–20 mm were selected.Concrete specimens were prepared with a water–cement ratio of 0.3,an aggregate–cement ratio of 4.5,the substitute rates of RA with 0,25%,50%,75%and a single-/double-gap-graded RA mix(mass ratio of particles with sizes of 5–10 mm to particles with sizes of 10–20 mm:1:1,1:2,2:1,2:3 and 3:2).Various properties of the RA-containing PC(RPC)were determined by analyzing the compressive strength,splitting tensile strength,effective porosity,permeation coefficient and impact and abrasion resistance of the specimens.The results showed the following:The density of the RPC decreased with an increasing RA replacement ratio.The density of the RPC prepared with a double-gapgraded RA mix was lower than that prepared with a single-gap-graded RA(particle size:10–20 mm)mix.The permeation coefficient of the RPC increased with increasing porosity.The splitting tensile strength of the RPC was positively correlated with its compressive strength.The compressive strength of the RPC decreased with increasing porosity.The regression analysis showed that the impact and abrasion resistance of the RPC increased with increasing compressive strength.In addition,all of the RPC specimens met the strength and permeation requirements.This study can provide theoretical support for the application of RPC.
文摘This paper presents the results of a series of studies on the influence of curing conditions on the strength development of high strength concrete. The 1-, 3-, 7-, 14- and 28-day strengths of four different mixes of Grade 75 similar to 80 concrete, with or without pulverized fuel ash and/or condensed silica fume, under five different curing regimes were investigated. It is revealed that the curing conditions have significant influence on both the short term and long term strength development of the concrete and that concrete mixes of the same grade but containing different mineral admixtures show distinct favour for a curing regime. These results will be helpful for evaluating suitable curing methods for high strength concrete with different mix proportions.
基金Funded by National Cooperative Highway Research Program(NCHRP) 18-16 in the US: Self-Consolidating Concrete for Cast-in-Place Bridge Components
文摘Cracking in concrete occurs from volumetric instability, mechanical loading, and/or environmental attack. Compared to conventional vibrated concrete, self-consolidating concrete often has a higher susceptibility to crack due to different mixture design, material properties and construction practices. To obtain a better understanding of self-consolidating concrete cracking behaviors for designing and constructing crack-controlled structural elements, reported current research and practices are reviewed and analyzed in this paper. It has been believed that when well designed and welt constructed, high quality self- consolidating concrete can be successfully used in various structures with cracks properly controlled.
文摘This paper presents a comprehensive review of historical theory development and current construction practice of pavement engineering in China. Mechanical models, design guides, construction techniques, evaluation methods and maintenance standards are elaborated for Portland cement concrete (PCC) pavements methodology among pavements of rural highways, urban roads and asphalt concrete (AC) pavements. Differences in design and airport fields are discussed based on service requirements. Lessons and experiences based on the past 20 years' construction practice and pavement performance are summarized. Current research areas in pavement engineering associated with unconventional geological and/or landscaping in China's highway construction and national strategic plan for pavement engineering are also covered.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(No.17203514)the Guangdong Provincial Natural Science Foundation(No.2015A030310282)the Guangzhou Science(Technology)Research Project of China(No.20160701329)
文摘A high-performance concrete (HPC) is required to have superior performance in various aspects such as workability,strength, durability, dimensional stability, segregation stability, and passing ability. The mix design of HPC is rather complicatedbecause the number of ingredients in HPC is usually more than those in conventional concrete and some of the required propertiesare conflicting with each other in the sense that improvement in one property would at the same time cause impairment of anotherproperty. However, there is still lack of understanding regarding how the various mix parameters should be optimised forachieving best overall performance. Most practitioners are still conducting mix design primarily through trial concrete mixing,which is laborious, ineffective, and often unable to timely respond to fluctuations in the properties of raw materials. To addressthese issues, the authors have been developing the packing and film thickness theories of concrete materials, in order to revamp themix design philosophy of HPC in terms of the water film thickness (WFT), paste film thickness (PFT), and mortar film thickness(MFT) in the concrete. Based on the findings from an extensive experimental programme, suitable ranges ofWFT, PFT, and MFThave been recommended.
基金sponsored by Michigan Department of Transportation(MDOT)Federal Highway Administration(FHWA)+1 种基金the sponsorship of the Michigan Department of Transportation(MDOT)Federal Highway Administration(FHWA)in the interest of information exchange
文摘The research presented in this paper aims to identify best practices of design and materials for concrete pavements in wet-freeze climates similar to the Michigan State. For the purposes of this paper, a best practice is a procedure that has been shown by field-validated research or experience to produce improved results and that is established or proposed as a standard suitable for widespread implementation. The local wet-freeze climate makes the requirements for Michigan's pavement system different from many other regions. Wetfreeze climates can result in various concrete pavement distress mechanisms such as thermally-induced cracking, freeze-thaw deterioration, accelerated cracking due to loss of support, frost heave, and material degradation. Therefore, appropriate procedures for design and material selection need to be selected to withstand high precipitation and freezing winter temperatures. Failure to take into account the climatic conditions may lead to inadequate or reduced pavement performance. However, utilizing appropriate techniques and materials could potentially improve the quality and increase the service life of the concrete pavement. Three design methods and five materials have been identified, and examples of their successful performance in wet-freeze climates are provided. In addition, the reasons that give them the superior performance in wet-freeze climates are discussed in detail.
基金supported by the National Natural Science Foundation of China (Grant Nos.52078310,51878420)the Ministry of Science and Technology of China (Grant Nos.2018YFC1504303,2017YFC1503103)Xingliao Talent Program of Liaoning Province (Grant No.XLYC1902038)。
文摘With the resource shortage in coastal areas,the construction of concrete structures using freshwater and river sand has brought great economic and environmental costs.The use of seawater,sea sand,and coral aggregates in concrete mixes has become an alternative solution for coastal and marine structures,especially for offshore structures and artificial islands.In this study,378 seawater,sea sand,and coral aggregate concrete(Coral-SWSSC)specimens were prepared,and their mechanical properties were investigated comprehensively through compressive tests to explore the optimized mix design at different grades.Results showed that the mechanical properties of Coral-SWSSC were strongly correlated with the water-to-binder ratios,coastal particle gradings,and pretreatment method of coastal particles.Based on the experimental results,mix proportion designs of CoralSWSSC were proposed for concrete from C20 to C50 grades,and the failure mechanism of Coral-SWSSC at different grades was discussed according to their respective failure modes.The findings of the current study provide knowledge on the optimized design of Coral-SWSSC,which can be used to promote the application of Coral-SWSSC in offshore,marine,and ocean engineering.
文摘The present study proposes the mix design method of Fly Ash(FA)based geopolymer concrete using Response Surface Methodology(RSM).In this method,different factors,including binder content,alkali/binder ratio,NS/NH ratio(sodium silicate/sodium hydroxide),NH molarity,and water/solids ratio were considered for the mix design of geopolymer concrete.The 2D contour plots were used to setup the mix design method to achieve the target compressive strength.The proposed mix design method of geopolymer concrete is divided into three categories based on curing regime,specifically one ambient curing(25°C)and two heat curing(60 and 90°C).The proposed mix design method of geopolymer concrete was validated through experimentation of M30,M50,and M70 concrete mixes at all curing regimes.The observed experimental compressive strength results validate the mix design method by more than 90%of their target strength.Furthermore,the current study concluded that the required compressive strength can be achieved by varying any factor in the mix design.In addition,the factor analysis revealed that the NS/NH ratio significantly affects the compressive strength of geopolymer concrete.
基金financially and jointly supported by the R&D Program of Department of Housing and Urban-Rural Development of Hubei Province(Grant No.202023)Wuhan Municipal Engineering Group(Grant No.202105)。
文摘Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as the precast pavement features.The previous research indicates that:(1)both super-slab and Michigan systems are recommended with the satisfied road performance close to the cast-in-place;(2)flexible base material is suggested for the fabricated pavement for the satisfied leveling and stress distribution;(3)to prevent the voiding phenomenon of the fabricated pavement,the sand cushion course,dry mixed mortar or self-leveling mortar,and other flowable materials could be used for the secondary leveling of the base after the pavement splicing;(4)two-direction dowel bars are recommended for slab connections of the fabricated pavement,which helps to improve the load transfer capacity of the joints and enhance the durability of the fabricated pavement structure;(5)the sealing treatment of precast slab joints needs strengthening to reduce the impact of surface runoff on the base course;(6)the further research focuses are designing with functional,composite,mechanized,intelligent,lightweight,and flexible pavement slabs.Besides,pavement mechanical properties induced by temperature overlapping traffic loads need to be revealed.