Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, co...Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.展开更多
When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To ...When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.展开更多
Human cadaver dissection remains a core and preferred method of anatomical instruction at most low- and middle-income health professional training institutions. Dissection, which is both traumatic and stressful, sets ...Human cadaver dissection remains a core and preferred method of anatomical instruction at most low- and middle-income health professional training institutions. Dissection, which is both traumatic and stressful, sets the tone of the students’ responses to later and or similar stressful learning opportunities like the post-mortems or care for terminally ill patients. Partial least squares structural equation modelling was used to determine the effect of the students’: personality, perception of the learning environment, learning approach, and effect of the environment on the student, on undergraduate health professional student’s activity in the human cadaver dissection room. This was a secondary analysis of previously collected data from a cross sectional survey of undergraduate health professional students. We found that personality type and perception of the environment had a positive effect on dissection room activity. Approach to learning and being affected by the dissection room experience (impact), had a negative effect on dissection room activity. All the above effects on dissection room activity were not significant. This study showed that personality, perception of the learning environment, learning approach and effect of the environment on the student, had effects on undergraduate health professional student’s activity in the human cadaver dissection room. The modelled effects are opportunities for educational interventions aimed at increasing student activity in the dissection room.展开更多
Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more acc...Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.展开更多
Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social ...Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors.展开更多
Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent var...Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.展开更多
This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided...This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided into spatial homogenous sites using slope, aspect, and soil humidity classes. Then a range of sites along the disturbance gradient was selected for sampling. Chemical and physical indicators of soil and litter health were measured at random points within these sites. Structural equation modeling(SEM) was applied to link six constructs of landscape heterogeneity, three constructs of disturbance(harvest, livestock, and human accessibility), and soil and litter health. The results showed that with decreasing accessibility, the total N and organic matter content of soil increased and effective bulk density decreased. Harvesting activities increased soil organic matter. Therefore, it is concluded that disturbances through harvesting and accessibility inversely affect the soil health. Unexpectedly, it was found that the litter total C and C:N ratio improved with an increase in the harvest and accessibility disturbances, whereas litter bulk density decreased. Investigation of tree composition revealed that in the climax communities, which are normally affected more by harvesting activities, some species like Fagus orientalis Lipsky with low decomposition rate are dominant. The research results showed that changes in disturbance intensity are reflected in litter and soil indicators, whereas the SEM indicated that landscape heterogeneity has a moderator effect on the disturbance to both litter and soil paths.展开更多
This paper proposes an integrative framework for network-structured analytic network process (ANP) modeling. The underlying rationales include: 1) creating the measuring items for the complex decision problems;2) appl...This paper proposes an integrative framework for network-structured analytic network process (ANP) modeling. The underlying rationales include: 1) creating the measuring items for the complex decision problems;2) applying factor analysis to reduce the complex measuring items into fewer constructs;3) employing Bayesian network classifier technique to discover the causal directions among constructs;4) using partial least squares path modeling to test the causal relationships among the items-constructs. The proposed framework is implemented for knowledge discovery to a case of high-tech companies’ enterprise resource planning (ERP) benefits and satisfaction in Hsinchu Science Park,Taiwan. The results show that the proposed framework for ANP modeling can reach a satisfactory level of convergent reliability and validity. Based on the findings, pragmatic implications to the ERP venders are discussed. This study has shed new light on the long neglected, yet critical, issue on decision structures and knowledge discovery for ANP modeling.展开更多
In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evalu...In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.展开更多
In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to...In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model.展开更多
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO...In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determine...The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.展开更多
Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model ...Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.展开更多
Purpose: General linear modeling (GLM) is usually applied to investigate factors associated with the domains of Quality of Life (QOL). A summation score in a specific sub-domain is regressed by a statistical model inc...Purpose: General linear modeling (GLM) is usually applied to investigate factors associated with the domains of Quality of Life (QOL). A summation score in a specific sub-domain is regressed by a statistical model including factors that are associated with the sub-domain. However, using the summation score ignores the influence of individual questions. Structural equation modeling (SEM) can account for the influence of each question’s score by compositing a latent variable from each question of a sub-domain. The objective of this study is to determine whether a conventional approach such as GLM, with its use of the summation score, is valid from the standpoint of the SEM approach. Method: We used the Japanese version of the Maugeri Foundation Respiratory Failure Questionnaire, a QOL measure, on 94 patients with heart failure. The daily activity sub-domain of the questionnaire was selected together with its four accompanying factors, namely, living together, occupation, gender, and the New York Heart Association’s cardiac function scale (NYHA). The association level between individual factors and the daily activity sub-domain was estimated using SEM?and GLM, respectively. The standard partial regression coefficients of GLM and standardized path coefficients of SEM were compared. If?these coefficients were similar (absolute value of the difference -0.06 and -0.07 for the GLM and SEM. Likewise, the estimates of occupation, gender, and NYHA were -0.18 and -0.20, -0.08 and -0.08, 0.51 and 0.54, respectively. The absolute values of the difference for each factor were 0.01, 0.02, 0.00, and 0.03, respectively. All differences were less than 0.05. This means that these two approaches lead to similar conclusions. Conclusion: GLM is a valid method for exploring association factors with a domain in QOL.展开更多
Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo po...Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo potential method. And the formation mechanism of the scattering resonance states of this reaction was well interpreted with the partial potential energy surface. The scattering resonance states of this reaction should belong to Feshbach resonance because of the coupling of the vibrational mode and the translational mode. With the one-dimensional square potential well model, the resonance width and lifetime of the I+HI(v=0)→IH(v'=0)+I state-to-state reaction were calculated, which preferably explained the high-resolved threshold photodetachment spectroscopy of the IHI- anion performed by Neumark et al..展开更多
基金Supported by "863" Program of P. R. China(2002AA2Z4291)
文摘Scientific forecasting water yield of mine is of great significance to the safety production of mine and the colligated using of water resources. The paper established the forecasting model for water yield of mine, combining neural network with the partial least square method. Dealt with independent variables by the partial least square method, it can not only solve the relationship between independent variables but also reduce the input dimensions in neural network model, and then use the neural network which can solve the non-linear problem better. The result of an example shows that the prediction has higher precision in forecasting and fitting.
基金supported by the National Natural Science Foundation of China,Nos.41874001 and 41664001Support Program for Outstanding Youth Talents in Jiangxi Province,No.20162BCB23050National Key Research and Development Program,No.2016YFB0501405。
文摘When the total least squares(TLS)solution is used to solve the parameters in the errors-in-variables(EIV)model,the obtained parameter estimations will be unreliable in the observations containing systematic errors.To solve this problem,we propose to add the nonparametric part(systematic errors)to the partial EIV model,and build the partial EIV model to weaken the influence of systematic errors.Then,having rewritten the model as a nonlinear model,we derive the formula of parameter estimations based on the penalized total least squares criterion.Furthermore,based on the second-order approximation method of precision estimation,we derive the second-order bias and covariance of parameter estimations and calculate the mean square error(MSE).Aiming at the selection of the smoothing factor,we propose to use the U curve method.The experiments show that the proposed method can mitigate the influence of systematic errors to a certain extent compared with the traditional method and get more reliable parameter estimations and its precision information,which validates the feasibility and effectiveness of the proposed method.
文摘Human cadaver dissection remains a core and preferred method of anatomical instruction at most low- and middle-income health professional training institutions. Dissection, which is both traumatic and stressful, sets the tone of the students’ responses to later and or similar stressful learning opportunities like the post-mortems or care for terminally ill patients. Partial least squares structural equation modelling was used to determine the effect of the students’: personality, perception of the learning environment, learning approach, and effect of the environment on the student, on undergraduate health professional student’s activity in the human cadaver dissection room. This was a secondary analysis of previously collected data from a cross sectional survey of undergraduate health professional students. We found that personality type and perception of the environment had a positive effect on dissection room activity. Approach to learning and being affected by the dissection room experience (impact), had a negative effect on dissection room activity. All the above effects on dissection room activity were not significant. This study showed that personality, perception of the learning environment, learning approach and effect of the environment on the student, had effects on undergraduate health professional student’s activity in the human cadaver dissection room. The modelled effects are opportunities for educational interventions aimed at increasing student activity in the dissection room.
基金supported by grants from the National Program on the Development of Basic Research (2011CB100100)the Priority Academic Program Development of Jiangsu Higher Education Institutions, the National Natural Science Foundations (31391632, 31200943, 31171187, and 91535103)+3 种基金the National High-tech R&D Program (863 Program) (2014AA10A601-5)the Natural Science Foundations of Jiangsu Province (BK20150010)the Natural Science Foundation of the Jiangsu Higher Education Institutions (14KJA210005)the Innovative Research Team of Universities in Jiangsu Province (KYLX_1352)
文摘Many complex traits are highly correlated rather than independent. By taking the correlation structure of multiple traits into account, joint association analyses can achieve both higher statistical power and more accurate estimation. To develop a statistical approach to joint association analysis that includes allele detection and genetic effect estimation, we combined multivariate partial least squares regression with variable selection strategies and selected the optimal model using the Bayesian Information Criterion(BIC). We then performed extensive simulations under varying heritabilities and sample sizes to compare the performance achieved using our method with those obtained by single-trait multilocus methods. Joint association analysis has measurable advantages over single-trait methods, as it exhibits superior gene detection power, especially for pleiotropic genes. Sample size, heritability,polymorphic information content(PIC), and magnitude of gene effects influence the statistical power, accuracy and precision of effect estimation by the joint association analysis.
文摘Purpose:This paper aims to examine how the adoption decision of the internet banking in North Cyprus would be affected based on the following dimensions;the technology features,the personal characteristics,the social environment and the expected risk.Design/methodology/approach:A self-administered survey was conducted with 291 participants responded to it.The partial least square approach of the structural equation modeling(PLS-SEM)is employed to investigate the direct effects of the proposed factors on the adoption decision.Additionally,the mediation test is used to examine indirect effects.Findings:Results showed that even though the participants appreciated the benefits of the online banking as the perceived usefulness factor exerts the greatest direct effect,they would rather use clear and easy-to-use websites,adding to that their assessments of the usefulness of these services are significantly influenced by the surrounding people’s views and prior experience.This is demonstrated by the total effects of the perceived ease of use and the subjective norm factors,which are greater than the direct effect of the perceived usefulness factor since both of these factors have significant direct and indirect effects mediated by the perceived usefulness factor.The negative impact of the perceived risk factor is weak compared to the previous factors.While the personal innovativeness factor showed the weakest effect among the proposed factors.
文摘Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.
文摘This paper focuses on the indicators of soil and litter health, disturbance, and landscape heterogeneity as a tool for prediction of ecosystem sustainability in the northern forests of Iran. The study area was divided into spatial homogenous sites using slope, aspect, and soil humidity classes. Then a range of sites along the disturbance gradient was selected for sampling. Chemical and physical indicators of soil and litter health were measured at random points within these sites. Structural equation modeling(SEM) was applied to link six constructs of landscape heterogeneity, three constructs of disturbance(harvest, livestock, and human accessibility), and soil and litter health. The results showed that with decreasing accessibility, the total N and organic matter content of soil increased and effective bulk density decreased. Harvesting activities increased soil organic matter. Therefore, it is concluded that disturbances through harvesting and accessibility inversely affect the soil health. Unexpectedly, it was found that the litter total C and C:N ratio improved with an increase in the harvest and accessibility disturbances, whereas litter bulk density decreased. Investigation of tree composition revealed that in the climax communities, which are normally affected more by harvesting activities, some species like Fagus orientalis Lipsky with low decomposition rate are dominant. The research results showed that changes in disturbance intensity are reflected in litter and soil indicators, whereas the SEM indicated that landscape heterogeneity has a moderator effect on the disturbance to both litter and soil paths.
文摘This paper proposes an integrative framework for network-structured analytic network process (ANP) modeling. The underlying rationales include: 1) creating the measuring items for the complex decision problems;2) applying factor analysis to reduce the complex measuring items into fewer constructs;3) employing Bayesian network classifier technique to discover the causal directions among constructs;4) using partial least squares path modeling to test the causal relationships among the items-constructs. The proposed framework is implemented for knowledge discovery to a case of high-tech companies’ enterprise resource planning (ERP) benefits and satisfaction in Hsinchu Science Park,Taiwan. The results show that the proposed framework for ANP modeling can reach a satisfactory level of convergent reliability and validity. Based on the findings, pragmatic implications to the ERP venders are discussed. This study has shed new light on the long neglected, yet critical, issue on decision structures and knowledge discovery for ANP modeling.
文摘In order to evaluate the general situation and find special problems of the freeway incident management system, an evaluation model is proposed. First, the expert appraisal approach is used to select the primary evaluation index. As a result, 81 indices and the hierarchical structures of the index such as the object layer, the sub-object layer, the criterion layer and the index layer are determined. Then, based on the fuzzy characteristics of each index layer, the analytical hierarchy process(AHP)and the fuzzy comprehensive evaluation are applied to generate the weight and the satisfaction of the index and the criterion layers. When analyzing the relationship between the sub-object layer and the object layer, it is easy to find that the number of sub-objects is too large and sub-objects are significantly redundant. The partial least square (PLS) is proposed to solve the problems. Finally, an application example, whose result has already been accepted and employed as the indication of a new project in improving incident management, is introduced and the result verifies the feasibility and efficiency of the model.
基金Supported by the National Social Science Foundation of China(Grant No.22BTJ059)。
文摘In this paper,we consider the partial linear regression model y_(i)=x_(i)β^(*)+g(ti)+ε_(i),i=1,2,...,n,where(x_(i),ti)are known fixed design points,g(·)is an unknown function,andβ^(*)is an unknown parameter to be estimated,random errorsε_(i)are(α,β)-mix_(i)ng random variables.The p-th(p>1)mean consistency,strong consistency and complete consistency for least squares estimators ofβ^(*)and g(·)are investigated under some mild conditions.In addition,a numerical simulation is carried out to study the finite sample performance of the theoretical results.Finally,a real data analysis is provided to further verify the effect of the model.
基金supported by the Aeronautical Science Foundation of China(20135153031 20135553035 2017ZC53033)
文摘In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
文摘The deformation prediction models of Wuqiangxi concrete gravity dam are developed,including two statistical models and a deep learning model.In the statistical models,the reliable monitoring data are firstly determined with Lahitte criterion;then,the stepwise regression and partial least squares regression models for deformation prediction of concrete gravity dam are constructed in terms of the reliable monitoring data,and the factors of water pressure,temperature and time effect are considered in the models;finally,according to the monitoring data from 2006 to 2020 of five typical measuring points including J23(on dam section 24^(#)),J33(on dam section 4^(#)),J35(on dam section 8^(#)),J37(on dam section 12^(#)),and J39(on dam section 15^(#))located on the crest of Wuqiangxi concrete gravity dam,the settlement curves of the measuring points are obtained with the stepwise regression and partial least squares regression models.A deep learning model is developed based on long short-term memory(LSTM)recurrent neural network.In the LSTM model,two LSTMlayers are used,the rectified linear unit function is adopted as the activation function,the input sequence length is 20,and the random search is adopted.The monitoring data for the five typical measuring points from 2006 to 2017 are selected as the training set,and the monitoring data from 2018 to 2020 are taken as the test set.From the results of case study,we can find that(1)the good fitting results can be obtained with the two statistical models;(2)the partial least squares regression algorithm can solve the model with high correlation factors and reasonably explain the factors;(3)the prediction accuracy of the LSTM model increases with increasing the amount of training data.In the deformation prediction of concrete gravity dam,the LSTM model is suggested when there are sufficient training data,while the partial least squares regression method is suggested when the training data are insufficient.
基金Supported partially by the Post Doctoral Natural Science Foundation of China(2013M532118,2015T81082)the National Natural Science Foundation of China(61573364,61273177,61503066)+2 种基金the State Key Laboratory of Synthetical Automation for Process Industriesthe National High Technology Research and Development Program of China(2015AA043802)the Scientific Research Fund of Liaoning Provincial Education Department(L2013272)
文摘Strong mechanical vibration and acoustical signals of grinding process contain useful information related to load parameters in ball mills. It is a challenge to extract latent features and construct soft sensor model with high dimensional frequency spectra of these signals. This paper aims to develop a selective ensemble modeling approach based on nonlinear latent frequency spectral feature extraction for accurate measurement of material to ball volume ratio. Latent features are first extracted from different vibrations and acoustic spectral segments by kernel partial least squares. Algorithms of bootstrap and least squares support vector machines are employed to produce candidate sub-models using these latent features as inputs. Ensemble sub-models are selected based on genetic algorithm optimization toolbox. Partial least squares regression is used to combine these sub-models to eliminate collinearity among their prediction outputs. Results indicate that the proposed modeling approach has better prediction performance than previous ones.
文摘Purpose: General linear modeling (GLM) is usually applied to investigate factors associated with the domains of Quality of Life (QOL). A summation score in a specific sub-domain is regressed by a statistical model including factors that are associated with the sub-domain. However, using the summation score ignores the influence of individual questions. Structural equation modeling (SEM) can account for the influence of each question’s score by compositing a latent variable from each question of a sub-domain. The objective of this study is to determine whether a conventional approach such as GLM, with its use of the summation score, is valid from the standpoint of the SEM approach. Method: We used the Japanese version of the Maugeri Foundation Respiratory Failure Questionnaire, a QOL measure, on 94 patients with heart failure. The daily activity sub-domain of the questionnaire was selected together with its four accompanying factors, namely, living together, occupation, gender, and the New York Heart Association’s cardiac function scale (NYHA). The association level between individual factors and the daily activity sub-domain was estimated using SEM?and GLM, respectively. The standard partial regression coefficients of GLM and standardized path coefficients of SEM were compared. If?these coefficients were similar (absolute value of the difference -0.06 and -0.07 for the GLM and SEM. Likewise, the estimates of occupation, gender, and NYHA were -0.18 and -0.20, -0.08 and -0.08, 0.51 and 0.54, respectively. The absolute values of the difference for each factor were 0.01, 0.02, 0.00, and 0.03, respectively. All differences were less than 0.05. This means that these two approaches lead to similar conclusions. Conclusion: GLM is a valid method for exploring association factors with a domain in QOL.
基金Ⅴ. ACKN0WLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20573064) and Ph.D. Special Research Foundation of Chinese Education Department.
文摘Based on the vibrational potential curves coupled with the minimum energy reaction path, the partial potential energy surface of the reaction I+HI→IH+I was constructed at the QCISD(T)//MP4SDQ level with pseudo potential method. And the formation mechanism of the scattering resonance states of this reaction was well interpreted with the partial potential energy surface. The scattering resonance states of this reaction should belong to Feshbach resonance because of the coupling of the vibrational mode and the translational mode. With the one-dimensional square potential well model, the resonance width and lifetime of the I+HI(v=0)→IH(v'=0)+I state-to-state reaction were calculated, which preferably explained the high-resolved threshold photodetachment spectroscopy of the IHI- anion performed by Neumark et al..