In this paper, high-order numerical analysis of finite element method(FEM) is presented for twodimensional multi-term time-fractional diffusion-wave equation(TFDWE). First of all, a fully-discrete approximate sche...In this paper, high-order numerical analysis of finite element method(FEM) is presented for twodimensional multi-term time-fractional diffusion-wave equation(TFDWE). First of all, a fully-discrete approximate scheme for multi-term TFDWE is established, which is based on bilinear FEM in spatial direction and Crank-Nicolson approximation in temporal direction, respectively. Then the proposed scheme is proved to be unconditionally stable and convergent. And then, rigorous proofs are given here for superclose properties in H-1-norm and temporal convergence in L-2-norm with order O(h-2+ τ-(3-α)), where h and τ are the spatial size and time step, respectively. At the same time, theoretical analysis of global superconvergence in H-1-norm is derived by interpolation postprocessing technique. At last, numerical example is provided to demonstrate the theoretical analysis.展开更多
In this paper,a class of multi-term time fractional advection diffusion equations(MTFADEs)is considered.By finite difference method in temporal direction and finite element method in spatial direction,two fully discre...In this paper,a class of multi-term time fractional advection diffusion equations(MTFADEs)is considered.By finite difference method in temporal direction and finite element method in spatial direction,two fully discrete schemes of MTFADEs with different definitions on multi-term time fractional derivative are obtained.The stability and convergence of these numerical schemes are discussed.Next,a V-cycle multigrid method is proposed to solve the resulting linear systems.The convergence of the multigrid method is investigated.Finally,some numerical examples are given for verification of our theoretical analysis.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.11771438,11471296)the Key Scientific Research Projects in Universities of Henan Province(No.19B110013)the Program for Scientific and Technological Innovation Talents in Universities of Henan Province(No.19HASTIT025)
文摘In this paper, high-order numerical analysis of finite element method(FEM) is presented for twodimensional multi-term time-fractional diffusion-wave equation(TFDWE). First of all, a fully-discrete approximate scheme for multi-term TFDWE is established, which is based on bilinear FEM in spatial direction and Crank-Nicolson approximation in temporal direction, respectively. Then the proposed scheme is proved to be unconditionally stable and convergent. And then, rigorous proofs are given here for superclose properties in H-1-norm and temporal convergence in L-2-norm with order O(h-2+ τ-(3-α)), where h and τ are the spatial size and time step, respectively. At the same time, theoretical analysis of global superconvergence in H-1-norm is derived by interpolation postprocessing technique. At last, numerical example is provided to demonstrate the theoretical analysis.
基金This research is supported by the National Center for Mathematics and Interdisciplinary Sciences,CAS,and by the National Natural Science Foundation of China(Grant No.11371357).
文摘In this paper,a class of multi-term time fractional advection diffusion equations(MTFADEs)is considered.By finite difference method in temporal direction and finite element method in spatial direction,two fully discrete schemes of MTFADEs with different definitions on multi-term time fractional derivative are obtained.The stability and convergence of these numerical schemes are discussed.Next,a V-cycle multigrid method is proposed to solve the resulting linear systems.The convergence of the multigrid method is investigated.Finally,some numerical examples are given for verification of our theoretical analysis.