Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three tempo...This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.展开更多
BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and prov...BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.展开更多
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa...Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.展开更多
Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection...Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.展开更多
After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promisi...After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.展开更多
Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct in...Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.展开更多
A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of th...A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.展开更多
[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, ...[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, A. spinula, A. Caespitosa, A. sichuanensis, A. ebianensis, A. retusa, A. guizhouensis and A. liboensis were subjected to drying, pulverization and sieving and then directly determined for near- infrared reflectance spectrums; and the plants in this genus were classified by clus- ter analysis and principal component analysis (PCA). [Result] The near-infrared re- flectance spectrums of the 23 batches of Guizhou Aspidistra plants showed very high similarity. The spectrums were processed by first derivative method, and the spectral range of 4 000-7 500 cm-1 was selected as the analytical range. Cluster analysis and PCA were employed to mass spectrum variables of plants in Aspidis- tra, fewer new variables became the linear combination of primary variables, and small differences between different varieties were enlarged, thereby facilitating intu- itive classification of plants in this genus. [Conclusion] Near-infrared diffuse re- flectance spectroscopy is nondestructive and rapid for determination of solid sam- pies, and provides a new method for the classification of Guizhou Aspidistra plants combined by information processing techniques.展开更多
In Ga As is an important bandgap-variable ternary semiconductor which has wide applications in electronics and optoelectronics. In this work, single-crystal In Ga As nanowires were synthesized by a chemical vapor depo...In Ga As is an important bandgap-variable ternary semiconductor which has wide applications in electronics and optoelectronics. In this work, single-crystal In Ga As nanowires were synthesized by a chemical vapor deposition method.Photoluminescence measurements indicate the In Ga As nanowires have strong light emission in near-infrared region. For the first time, photodetector based on as-grown In Ga As nanowires was also constructed. It shows good light response over a broad spectral range in infrared region with responsivity of 6.5×10~3 AW^(-1) and external quantum efficiency of 5.04×10~5%. This photodetector may have potential applications in integrated optoelectronic devices and systems.展开更多
AIM To investigate near-infrared photoimmunotherapeutic effect mediated by an anti-tissue factor(TF) antibody conjugated to indocyanine green(ICG) in a pancreatic cancer model.METHODS Near-infrared photoimmunotherapy(...AIM To investigate near-infrared photoimmunotherapeutic effect mediated by an anti-tissue factor(TF) antibody conjugated to indocyanine green(ICG) in a pancreatic cancer model.METHODS Near-infrared photoimmunotherapy(NIR-PIT) is a highly selective tumor treatment that utilizes an antibody-photosensitizer conjugate administration, followed by NIR light exposure. Anti-TF antibody 1849-ICG conjugate was synthesized by labeling of rat IgG2 b anti-TF monoclonal antibody 1849(anti-TF 1849) to a NIR photosensitizer,ICG. The expression levels of TF in two human pancreatic cancer cell lines were examined by western blotting. Specific binding of the 1849-ICG to TF-expressing BxPC-3 cells was examined by fluorescence microscopy. NIR-PITinduced cell death was determined by cell viability imaging assay. In vivo longitudinal fluorescence imaging was used to explore the accumulation of 1849-ICG conjugate in xenograft tumors. To examine the effect of NIRPIT, tumor-bearing mice were separated into 5 groups:(1) 100 μg of 1849-ICG i.v. administration followed by NIR light exposure(50 J/cm2) on two consecutive days(Days 1 and 2);(2) NIR light exposure(50 J/cm2) only on two consecutive days(Days 1 and 2);(3) 100 μg of 1849-ICG i.v. administration;(4) 100 μg of unlabeled antiTF 1849 i.v. administration; and(5) the untreated control. Semiweekly tumor volume measurements, accompanied with histological and immunohistochemical(IHC) analyses of tumors, were performed 3 d after the 2nd irradiation with NIR light to monitor the effect of treatments. RESULTS High TF expression in BxPC-3 cells was observed via western blot analysis, concordant with the observed preferential binding with intracellular localization of 1849-ICG via fluorescence microscopy. NIR-PIT-induced cell death was observed by performing cell viability imaging assay. In contrast to the other test groups, tumor growth was significantly inhibited by NIR-PIT with a statistically significant difference in relative tumor volumes for 27 d after the treatment start date [2.83 ± 0.38(NIR-PIT) vs 5.42 ± 1.61(Untreated), vs 4.90 ± 0.87(NIR), vs 4.28 ±1.87(1849-ICG), vs 4.35 ± 1.42(anti-TF 1849), at Day 27, P < 0.05]. Tumors that received NIR-PIT showed evidence of necrotic cell death-associated features upon hematoxylin-eosin staining accompanied by a decrease in Ki-67-positive cells(a cell proliferation marker) by IHC examination.CONCLUSION The TF-targeted NIR-PIT with the 1849-ICG conjugate can potentially open a new platform for treatment of TF-expressing pancreatic cancer.展开更多
Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato g...Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (To) (standard error of prediction SEP=2.014 ℃, coefficient of determination RSQ=0.85), gelatinization peak temperature (Tp) (SEP=-1.371 ℃, RSQ=0.89), gelatinization temperature range (Tr) (SEP=2.234 ℃, RSQ=0.86), and cooling resistance (CR) (SEP=0.528, RSQ=0.89). Gelatinization completion temperature (To), enthalpy of gelatinization (△H), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality.展开更多
This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to...This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to establish a partial least square(PLS)model based on correlation local embedding(CLE).Mongolian oak(Quercus mongolica Fisch.ex Ledeb.)was used to test the eff ectiveness of the model.The cross-validation method was used to verify the robustness of the CLE–PLS model.Ninety samples were tested as the calibration set and forty-fi ve as the validation set.The results show that the prediction coeffi cient of determination(R2 p)is 0.80 for MOR,and 0.78 for MOE.The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE.展开更多
AIM: To investigate feasibility and accuracy of near-infrared fluorescence imaging using indocyanine green: nanocolloid for sentinel lymph node (SLN) detection in gastric cancer.METHODS: A prospective, single-institut...AIM: To investigate feasibility and accuracy of near-infrared fluorescence imaging using indocyanine green: nanocolloid for sentinel lymph node (SLN) detection in gastric cancer.METHODS: A prospective, single-institution, phase I feasibility trial was conducted. Patients suffering from gastric cancer and planned for gastrectomy were included. During surgery, a subserosal injection of 1.6 mL ICG:Nanocoll was administered around the tumor. NIR fluorescence imaging of the abdominal cavity was performed using the Mini-FLARE™ NIR fluorescence imaging system. Lymphatic pathways and SLNs were visualized. Of every detected SLN, the corresponding lymph node station, signal-to-background ratio and histopathological diagnosis was determined. Patients underwent standard-of-care gastrectomy. Detected SLNs outside the standard dissection planes were also resected and evaluated.RESULTS: Twenty-six patients were enrolled. Four patients were excluded because distant metastases were found during surgery or due to technical failure of the injection. In 21 of the remaining 22 patients, at least 1 SLN was detected by NIR Fluorescence imaging (mean 3.1 SLNs; range 1-6). In 8 of the 21 patients, tumor-positive LNs were found. Overall accuracy of the technique was 90% (70%-99%; 95%CI), which decreased by higher pT-stage (100%, 100%, 100%, 90%, 0% for respectively Tx, T1, T2, T3, T4 tumors). All NIR-negative SLNs were completely effaced by tumor. Mean fluorescence signal-to-background ratio of SLNs was 4.4 (range 1.4-19.8). In 8 of the 21 patients, SLNs outside the standard resection plane were identified, that contained malignant cells in 2 patients.CONCLUSION: This study shows successful use of ICG:Nanocoll as lymphatic tracer for SLN detection in gastric cancer. Moreover, tumor-containing LNs outside the standard dissection planes were identified.展开更多
Stroke is caused by an acute focal disruption of the vasculature in the central nervous system.Neurological-related functional deficits are the most devastating consequences for stroke survi-vors.Neural signals from s...Stroke is caused by an acute focal disruption of the vasculature in the central nervous system.Neurological-related functional deficits are the most devastating consequences for stroke survi-vors.Neural signals from stroke patients can reflect the functional statuses of patients and provide insights into the neuronal recovery mechanism for functioning,which could be used as the basis for designing optimal treatment strategies.Near-infrared spectroscopy(NIRS)is a low-cost,noninvasive,easily operated neuroimage method and it is compatible with various rehabilitative programs.These advantages make NIRS an excellent candidate in research for stroke recovery.Here,we focused on the brain functions and recovery for stroke patients at stable status,conducted a systematic literature review about NIRS applications in stroke since 2000 and identified a total of 72 references through ScienceDirect and PubMed database retrieval.The NIRS studies in stroke include resting-state function and its recovery,motor function and itsrecovery,motor and cognition interference,cognitive function and its recovery,language function and its recovery,emotional function and its recovery and other applications.Based on the results of the quality assessment,we identified some study gaps from the previous research and provided suggestions for some methodological improvement in the future.The trend of NIRS gives a boost to its application in stroke,and the potential research directions for NIRS in stroke are pros-pected,including multi-center clinical research,treatment efficacy prediction research and brain-muscle coupling research.Finally,limitations of NIRS are discussed.展开更多
Objective To develop a rapid, highly sensitive, and quantitative method for the detection of NT-proBNP levels based on a near-infrared point-of-care diagnostic (POCT) device with wide scope. Methods The lateral flow...Objective To develop a rapid, highly sensitive, and quantitative method for the detection of NT-proBNP levels based on a near-infrared point-of-care diagnostic (POCT) device with wide scope. Methods The lateral flow assay (LFA) strip of NT-proBNP was first prepared to achieve rapid detection. Then, the antibody pairs for NT-proBNP were screened and labeled with the near-infrared fluorescent dye Dylight-800. The capture antibody was fixed on a nitrocellulose membrane by a scribing device. Serial dilutions of serum samples were prepared using NT-proBNP-free serum series. The prepared test strips, combined with a near-infrared POCT device, were validated by known concentrations of clinical samples. The POCT device gave the output of the ratio of the intensity of the fluorescence signal of the detection line to that of the quality control line. The relationship between the ratio value and the concentration of the specimen was plotted as a work curve. The results of 62 clinical specimens obtained from our method were compared in parallel with those obtained from the Roche E411 kit. Results Based on the log-log plot, the new method demonstrated that there was a good linear relationship between the ratio value and NT-proBNP concentrations ranging from 20 pg/mL to 10 ng/mL. The results of the 62 clinical specimens measured by our method showed a good linear correlation with those measured by the Roche E411 kit. Conclusion The new LFA detection method of NT-proBNP levels based on the near-infrared POCT device was rapid and highly sensitive with wide scope and was thus suitable for rapid and early clinical diagnosis of cardiac impairment.展开更多
To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and nea...To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.展开更多
Objective: To evaluate the imaging potential of a novel near-infrared(NIR) probe conjugated to COC183 B2 monoclonal antibodies(MAb) in ovarian cancer(OC).Methods: The expression of OC183 B2 antigen in OC was determine...Objective: To evaluate the imaging potential of a novel near-infrared(NIR) probe conjugated to COC183 B2 monoclonal antibodies(MAb) in ovarian cancer(OC).Methods: The expression of OC183 B2 antigen in OC was determined by immunohistochemical(IHC) staining using tissue microarrays with the H-score system and immunofluorescence(IF) staining of tumor cell lines.Imaging probes with the NIR fluorescent dye cyanine 7(Cy7) conjugated to COC183 B2 Mab were chemically engineered. OC183 B2-positive human OC cells(SKOV3-Luc) were injected subcutaneously into BALB/c nude mice. Bioluminescent imaging(BLI) was performed to detect tumor location and growth. COC183 B2-Cy7 at 1.1,3.3, 10, or 30 μg were used for in vivo fluorescence imaging, and phosphate-buffered saline(PBS), free Cy7 dye and mouse isotype immunoglobulin G(IgG)-Cy7(delivered at the same doses as COC183 B2-Cy7) were used as controls.Results: The expression of OC183 B2 with a high H-score was more prevalent in OC tissue than fallopian tube(FT) tissue. Among 417 OC patients, the expression of OC183 B2 was significantly correlated with the histological subtype, histological grade, residual tumor size, relapse state and survival status. IF staining demonstrated that COC183 B2 specifically expressed in SKOV3 cells but not HeLa cells. In vivo NIR fluorescence imaging indicated that COC183 B2-Cy7 was mainly distributed in the xenograft and liver with optimal tumor-to-background(T/B)ratios in the xenograft at 30 μg dose. The highest fluorescent signals in the tumor were observed at 96 h postinjection(hpi). Ex vivo fluorescence imaging revealed the fluorescent signals mainly from the tumor and liver. IHC analysis confirmed that xenografts were OC183 B2 positive.Conclusions: COC183 B2 is a good candidate for NIR fluorescence imaging and imaging-guided surgery in OC.展开更多
Novel perylene bisimide dyes bay-functionalized with naphthalimide chromophores have been prepared conveniently by coupling of 1,8-naphthalimide and dibromoperylene bisimides. Their optical properties were investigate...Novel perylene bisimide dyes bay-functionalized with naphthalimide chromophores have been prepared conveniently by coupling of 1,8-naphthalimide and dibromoperylene bisimides. Their optical properties were investigated by UV-vis and fluorescence spectroscopy. The absorption spectra of these compounds showed wide spectral responses from 300 to 700 nm, which would be potentials for application as organic solar cells.展开更多
Background:The possibility of assessing meat quality traits over the meat chain is strongly limited,especially in the context of selective breeding which requires a large number of phenotypes.The main objective of thi...Background:The possibility of assessing meat quality traits over the meat chain is strongly limited,especially in the context of selective breeding which requires a large number of phenotypes.The main objective of this study was to investigate the suitability of portable infrared spectrometers for phenotyping beef cattle aiming to genetically improving the quality of their meat.Meat quality traits(pH,color,water holding capacity,tenderness)were appraised on rib eye muscle samples of 1,327 Piemontese young bulls using traditional(i.e.,reference/gold standard)laboratory analyses;the same traits were also predicted from spectra acquired at the abattoir on the intact muscle surface of the same animals 1 d after slaughtering.Genetic parameters were estimated for both laboratory measures of meat quality traits and their spectra-based predictions.Results:The prediction performances of the calibration equations,assessed through external validation,were satisfactory for color traits(R^(2) from 0.52 to 0.80),low for pH and purge losses(R^(2) around 0.30),and very poor for cooking losses and tenderness(R^(2) below 0.20).Except for lightness and purge losses,the heritability estimates of most of the predicted traits were lower than those of the measured traits while the genetic correlations between measured and predicted traits were high(average value 0.81).Conclusions:Results showed that NIRS predictions of color traits,pH,and purge losses could be used as indicator traits for the indirect genetic selection of the reference quality phenotypes.Results for cooking losses were less effective,while the NIR predictions of tenderness were affected by a relatively high uncertainty of estimate.Overall,genetic selection of some meat quality traits,whose direct phenotyping is difficult,can benefit of the application of infrared spectrometers technology.展开更多
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
文摘This compendium review focuses on the spatial distribution of sensitivity to localized absorption changes in optically diffuse media,particularly for measurements relevant to near-infrared spectroscopy.The three temporal domains,continuous wave,frequency domain,and time domain,each obtain different optical data types whose changes may be related to effective homogeneous changes in the absorption coefficient.Sensitivity is the relationship between a localized perturbation and the recovered effective homogeneous absorption change.Therefore,spatial sensitivity maps representing the perturbation location can be generated for the numerous optical data types in the three temporal domains.The review first presents a history of the past 30 years of work investigating this sensitivity in optically diffuse media.These works are experimental and theoretical,presenting one-,two-,and three-dimensional sensitivity maps for different Near-Infrared Spectroscopy methods,domains,and data types.Following this history,we present a compendium of sensitivity maps organized by temporal domain and then data type.This compendium provides a valuable tool to compare the spatial sensitivity of various measurement methods and parameters in one document.Methods for one to generate these maps are provided in Appendix A,including the code.This historical review and comprehensive sensitivity map compendium provides a single source researchers may use to visualize,investigate,compare,and generate sensitivity to localized absorption change maps.
基金Supported by The Southwest Medical University Student Innovation and Entrepreneurship Project Fund,No.202310632045 and No.202310632059。
文摘BACKGROUND Compared with current methods used to assess schizophrenia,near-infrared spectroscopy(NIRS)has the advantages of providing noninvasive and real-time monitoring of functional activities of the brain and providing direct and objective assessment information.AIM To explore the research field of NIRS in schizophrenia from the perspective of bibliometrics.METHODS The Web of Science Core Collection was used as the search tool,and the last search date was April 21,2024.Bibliometric indicators,such as the numbers of publications and citations,were recorded.Bibliometrix and VOS viewer were used for visualization analysis.RESULTS A total of 355 articles from 105 journals were included in the analysis.The overall trend of the number of research publications increased.Schizophrenia Research was identified as an influential journal in the field.Kasai K was one of the most influential and productive authors in this area of research.The University of Tokyo and Japan had the highest scientific output for an institution and a country,respectively.The top ten keywords were“schizophrenia”,“activation”,“near-infrared spectroscopy”,“verbal fluency task”,“cortex”,“brain,performance”,“workingmemory”,“brain activation”,and“prefrontal cortex”.CONCLUSION Our study reveals the evolution of knowledge and emerging trends in the field of NIRS in schizophrenia.the research focus is shifting from underlying disease characteristics to more in-depth studies of brain function and physiological mechanisms.
基金supported by the Second Stage of Brain Korea 21 Projects
文摘Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.
基金supported by the National Natural Science Foundation of China(U22A2075,U20A20209)the Fundamental Research Funds for the Central Universities(226-2022-00200)the Qianjiang Distinguished Experts program of Hangzhou.
文摘Ratiometric fluorescent detection of iron(Ⅲ)(Fe^(3+))offers inherent self-calibration and contactless analytic capabilities.However,realizing a dual-emission near-infrared(NIR)nanosensor with a low limit of detection(LOD)is rather challenging.In this work,we report the synthesis of water-dispersible erbium-hyperdoped silicon quantum dots(Si QDs:Er),which emit NIR light at the wavelengths of 810 and 1540 nm.A dual-emission NIR nanosensor based on water-dispersible Si QDs:Er enables ratiometric Fe^(3+)detection with a very low LOD(0.06μM).The effects of pH,recyclability,and the interplay between static and dynamic quenching mechanisms for Fe^(3+)detection have been systematically studied.In addition,we demonstrate that the nanosensor may be used to construct a sequential logic circuit with memory functions.
基金supported by the National Key R&D Program of China,No.2020YFC2004202(to DX).
文摘After stroke,even high-functioning individuals may experience compromised bimanual coordination and fine motor dexterity,leading to reduced functional independence.Bilateral arm training has been proposed as a promising intervention to address these deficits.However,the neural basis of the impairment of functional fine motor skills and their relationship to bimanual coordination performance in stroke patients remains unclear,limiting the development of more targeted interventions.To address this gap,our study employed functional near-infrared spectroscopy to investigate cortical responses in patients after stroke as they perform functional tasks that engage fine motor control and coordination.Twenty-four high-functioning patients with ischemic stroke(7 women,17 men;mean age 64.75±10.84 years)participated in this cross-sectional observational study and completed four subtasks from the Purdue Pegboard Test,which measures unimanual and bimanual finger and hand dexterity.We found significant bilateral activation of the sensorimotor cortices during all Purdue Pegboard Test subtasks,with bimanual tasks inducing higher cortical activation than the assembly subtask.Importantly,patients with better bimanual coordination exhibited lower cortical activation during the other three Purdue Pegboard Test subtasks.Notably,the observed neural response patterns varied depending on the specific subtask.In the unaffected hand task,the differences were primarily observed in the ipsilesional hemisphere.In contrast,the bilateral sensorimotor cortices and the contralesional hemisphere played a more prominent role in the bimanual task and assembly task,respectively.While significant correlations were found between cortical activation and unimanual tasks,no significant correlations were observed with bimanual tasks.This study provides insights into the neural basis of bimanual coordination and fine motor skills in high-functioning patients after stroke,highlighting task-dependent neural responses.The findings also suggest that patients who exhibit better bimanual performance demonstrate more efficient cortical activation.Therefore,incorporating bilateral arm training in post-stroke rehabilitation is important for better outcomes.The combination of functional near-infrared spectroscopy with functional motor paradigms is valuable for assessing skills and developing targeted interventions in stroke rehabilitation.
文摘Laparoscopic cholecystectomy(LC)remains one of the most commonly performed procedures in adult and paediatric populations.Despite the advances made in intraoperative biliary anatomy recognition,iatrogenic bile duct injuries during LC represent a fatal complication and consist an economic burden for healthcare systems.A series of methods have been proposed to prevent bile duct injury,among them the use of indocyanine green(ICG)fluorescence.The most commonly reported method of ICG injection is the intravenous administration,while literature is lacking studies investigating the direct intragallbladder ICG injection.This narrative mini-review aims to assess the potential applications,usefulness,and limitations of intragallbladder ICG fluorescence in LC.Authors screened the available international literature to identify the reports of intragallbladder ICG fluorescence imaging in minimally invasive cholecystectomy,as well as special issues regarding its use.Literature search retrieved four prospective cohort studies,three case-control studies,and one case report.In the three case-control studies selected,intragallbladder near-infrared cholangiography(NIRC)was compared with standard LC under white light,with intravenous administration of ICG for NIRC and with standard intraoperative cholangiography(IOC).In total,133 patients reported in the literature have been administered intragallbladder ICG administration for biliary mapping during LC.Literature includes several reports of intragallbladder ICG administration,but a standardized technique has not been established yet.Published data suggest that NIRC with intragallbladder ICG injection is a promising method to achieve biliary mapping,overwhelming limitations of IOC including intervention and radiation exposure,as well as the high hepatic parenchyma signal and time interval needed in intravenous ICG fluorescence.Evidence-based guidelines on the role of intragallbladder ICG fluorescence in LC require the assessment of further studies and multicenter data collection into large registries.
基金Supported by the National Natural Science Foundation of China (30800257,30700799)the Scien-tific Research Starting Foundation for Introduced Talented Persons of China Pharmaceutical University~~
文摘A new facile method for preparing water-soluble near-infrared (NIR)-emitting PbS quantum dots (QDs) is proposed by using N-acetyl-L-cysteine (NAC, a derivate of L-cysteine) as its stabilizer. The influence of the precursor Pb/S molar ratio, the Pb/NAC molar ratio, and the pH of original solution on optical properties is explored. Results show that aqueous PbS QDs with strong NIR fluorescence can be prepared and their photoluminescence emission peaks can be tuned from 895 nm to 970 nm. Studies indicate that such aqueous QDs have a potential application in biomedical imaging, especially in noninvasive in vivo fluorescence imaging. In addition, the resulting PbS QDs are further characterized by a transmission electron microscopy and X-ray diffraction analysis.
基金Supported by National Natural Science Foundation of China(81360623)~~
文摘[Objective] This study was conducted to establish a near-infrared diffuse reflectance spectroscopy of Guizhou Aspidistra plants. [Method] Twenty three batch- es of Guizhou Aspidistra plants including A. chishuiensis, A. spinula, A. Caespitosa, A. sichuanensis, A. ebianensis, A. retusa, A. guizhouensis and A. liboensis were subjected to drying, pulverization and sieving and then directly determined for near- infrared reflectance spectrums; and the plants in this genus were classified by clus- ter analysis and principal component analysis (PCA). [Result] The near-infrared re- flectance spectrums of the 23 batches of Guizhou Aspidistra plants showed very high similarity. The spectrums were processed by first derivative method, and the spectral range of 4 000-7 500 cm-1 was selected as the analytical range. Cluster analysis and PCA were employed to mass spectrum variables of plants in Aspidis- tra, fewer new variables became the linear combination of primary variables, and small differences between different varieties were enlarged, thereby facilitating intu- itive classification of plants in this genus. [Conclusion] Near-infrared diffuse re- flectance spectroscopy is nondestructive and rapid for determination of solid sam- pies, and provides a new method for the classification of Guizhou Aspidistra plants combined by information processing techniques.
基金the NSF of China(Nos.61574054,61505051,11374092,11204073,61474040,and51302077)the National Basic Research Program of China(No.2012CB932703)+2 种基金the Hunan province science and technology plan(No.2014FJ2001,2014GK3015,and 2014TT1004)the Hunan Provincial Natural Science Foundation of China(No.2015JJ3049)the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province
文摘In Ga As is an important bandgap-variable ternary semiconductor which has wide applications in electronics and optoelectronics. In this work, single-crystal In Ga As nanowires were synthesized by a chemical vapor deposition method.Photoluminescence measurements indicate the In Ga As nanowires have strong light emission in near-infrared region. For the first time, photodetector based on as-grown In Ga As nanowires was also constructed. It shows good light response over a broad spectral range in infrared region with responsivity of 6.5×10~3 AW^(-1) and external quantum efficiency of 5.04×10~5%. This photodetector may have potential applications in integrated optoelectronic devices and systems.
基金Supported by a Grant-in-Aid for Scientific Research(C)from the Ministry of Education,Culture,Sports,Science,and Technology,Japan,No.17K10460(to Aung W)
文摘AIM To investigate near-infrared photoimmunotherapeutic effect mediated by an anti-tissue factor(TF) antibody conjugated to indocyanine green(ICG) in a pancreatic cancer model.METHODS Near-infrared photoimmunotherapy(NIR-PIT) is a highly selective tumor treatment that utilizes an antibody-photosensitizer conjugate administration, followed by NIR light exposure. Anti-TF antibody 1849-ICG conjugate was synthesized by labeling of rat IgG2 b anti-TF monoclonal antibody 1849(anti-TF 1849) to a NIR photosensitizer,ICG. The expression levels of TF in two human pancreatic cancer cell lines were examined by western blotting. Specific binding of the 1849-ICG to TF-expressing BxPC-3 cells was examined by fluorescence microscopy. NIR-PITinduced cell death was determined by cell viability imaging assay. In vivo longitudinal fluorescence imaging was used to explore the accumulation of 1849-ICG conjugate in xenograft tumors. To examine the effect of NIRPIT, tumor-bearing mice were separated into 5 groups:(1) 100 μg of 1849-ICG i.v. administration followed by NIR light exposure(50 J/cm2) on two consecutive days(Days 1 and 2);(2) NIR light exposure(50 J/cm2) only on two consecutive days(Days 1 and 2);(3) 100 μg of 1849-ICG i.v. administration;(4) 100 μg of unlabeled antiTF 1849 i.v. administration; and(5) the untreated control. Semiweekly tumor volume measurements, accompanied with histological and immunohistochemical(IHC) analyses of tumors, were performed 3 d after the 2nd irradiation with NIR light to monitor the effect of treatments. RESULTS High TF expression in BxPC-3 cells was observed via western blot analysis, concordant with the observed preferential binding with intracellular localization of 1849-ICG via fluorescence microscopy. NIR-PIT-induced cell death was observed by performing cell viability imaging assay. In contrast to the other test groups, tumor growth was significantly inhibited by NIR-PIT with a statistically significant difference in relative tumor volumes for 27 d after the treatment start date [2.83 ± 0.38(NIR-PIT) vs 5.42 ± 1.61(Untreated), vs 4.90 ± 0.87(NIR), vs 4.28 ±1.87(1849-ICG), vs 4.35 ± 1.42(anti-TF 1849), at Day 27, P < 0.05]. Tumors that received NIR-PIT showed evidence of necrotic cell death-associated features upon hematoxylin-eosin staining accompanied by a decrease in Ki-67-positive cells(a cell proliferation marker) by IHC examination.CONCLUSION The TF-targeted NIR-PIT with the 1849-ICG conjugate can potentially open a new platform for treatment of TF-expressing pancreatic cancer.
基金Project supported by the Hi-Tech Research and Development Pro-gram (863) of China (No. 2004AA241180), and the Scientific Re-search Foundation for the Returned Overseas Chinese Scholars of State Education Ministry, and the Science and Technology Depart-ment of Zhejiang Province, China
文摘Sweetpotato starch thermal properties and its noodle quality were analyzed using a rapid predictive method based on near-infrared spectroscopy (NIRS). This method was established based on a total of 93 sweetpotato genotypes with diverse genetic background. Starch samples were scanned by NIRS and analyzed for quality properties by reference methods. Results of statistical modelling indicated that NIRS was reasonably accurate in predicting gelatinization onset temperature (To) (standard error of prediction SEP=2.014 ℃, coefficient of determination RSQ=0.85), gelatinization peak temperature (Tp) (SEP=-1.371 ℃, RSQ=0.89), gelatinization temperature range (Tr) (SEP=2.234 ℃, RSQ=0.86), and cooling resistance (CR) (SEP=0.528, RSQ=0.89). Gelatinization completion temperature (To), enthalpy of gelatinization (△H), cooling loss (CL) and swelling degree (SWD), were modelled less well with RSQ between 0.63 and 0.84. The present results suggested that the NIRS based method was sufficiently accurate and practical for routine analysis of sweetpotato starch and its noodle quality.
基金financially supported by the China State Forestry Administration“948”projects(2015-4-52)Fundamental Research Funds for the Central Universities(2572017DB05)Heilongjiang Natural Science Foundation(C2017005)。
文摘This study used near-infrared(NIR)spectroscopy to predict mechanical properties of wood.NIR spectra were collected in wavelengths 900–1700 nm,and spectra averaged by radial and tangential surface spectra were used to establish a partial least square(PLS)model based on correlation local embedding(CLE).Mongolian oak(Quercus mongolica Fisch.ex Ledeb.)was used to test the eff ectiveness of the model.The cross-validation method was used to verify the robustness of the CLE–PLS model.Ninety samples were tested as the calibration set and forty-fi ve as the validation set.The results show that the prediction coeffi cient of determination(R2 p)is 0.80 for MOR,and 0.78 for MOE.The ratio of performance to deviation is 2.23 for MOR and 2.15 for MOE.
文摘AIM: To investigate feasibility and accuracy of near-infrared fluorescence imaging using indocyanine green: nanocolloid for sentinel lymph node (SLN) detection in gastric cancer.METHODS: A prospective, single-institution, phase I feasibility trial was conducted. Patients suffering from gastric cancer and planned for gastrectomy were included. During surgery, a subserosal injection of 1.6 mL ICG:Nanocoll was administered around the tumor. NIR fluorescence imaging of the abdominal cavity was performed using the Mini-FLARE™ NIR fluorescence imaging system. Lymphatic pathways and SLNs were visualized. Of every detected SLN, the corresponding lymph node station, signal-to-background ratio and histopathological diagnosis was determined. Patients underwent standard-of-care gastrectomy. Detected SLNs outside the standard dissection planes were also resected and evaluated.RESULTS: Twenty-six patients were enrolled. Four patients were excluded because distant metastases were found during surgery or due to technical failure of the injection. In 21 of the remaining 22 patients, at least 1 SLN was detected by NIR Fluorescence imaging (mean 3.1 SLNs; range 1-6). In 8 of the 21 patients, tumor-positive LNs were found. Overall accuracy of the technique was 90% (70%-99%; 95%CI), which decreased by higher pT-stage (100%, 100%, 100%, 90%, 0% for respectively Tx, T1, T2, T3, T4 tumors). All NIR-negative SLNs were completely effaced by tumor. Mean fluorescence signal-to-background ratio of SLNs was 4.4 (range 1.4-19.8). In 8 of the 21 patients, SLNs outside the standard resection plane were identified, that contained malignant cells in 2 patients.CONCLUSION: This study shows successful use of ICG:Nanocoll as lymphatic tracer for SLN detection in gastric cancer. Moreover, tumor-containing LNs outside the standard dissection planes were identified.
基金This work was supported by the National Key Research and Development Program of China(2020YFC2004300,2020YFC2004302,2020YFC2004303,2020YFC2004301 and 2020YFC2004304)the National Natural Science Foundation of China(32000980)+4 种基金the Guangdong Basic and Applied Basic Research Foundation(2019A1515110427 and 2020B1515120014)the Guangdong Basic and Applied Basic Research Foundation Outstanding Youth Prqiect(2021B1515020064)the Key Laboratory Program of Guangdong Higher Education Institutes(2020KSYS001)the Science and Technology Program of Guangzhou(202103000032)the Key P1atform and Scientific Research Project of Guangdong Provincial Education Department(2018KTSCX246).
文摘Stroke is caused by an acute focal disruption of the vasculature in the central nervous system.Neurological-related functional deficits are the most devastating consequences for stroke survi-vors.Neural signals from stroke patients can reflect the functional statuses of patients and provide insights into the neuronal recovery mechanism for functioning,which could be used as the basis for designing optimal treatment strategies.Near-infrared spectroscopy(NIRS)is a low-cost,noninvasive,easily operated neuroimage method and it is compatible with various rehabilitative programs.These advantages make NIRS an excellent candidate in research for stroke recovery.Here,we focused on the brain functions and recovery for stroke patients at stable status,conducted a systematic literature review about NIRS applications in stroke since 2000 and identified a total of 72 references through ScienceDirect and PubMed database retrieval.The NIRS studies in stroke include resting-state function and its recovery,motor function and itsrecovery,motor and cognition interference,cognitive function and its recovery,language function and its recovery,emotional function and its recovery and other applications.Based on the results of the quality assessment,we identified some study gaps from the previous research and provided suggestions for some methodological improvement in the future.The trend of NIRS gives a boost to its application in stroke,and the potential research directions for NIRS in stroke are pros-pected,including multi-center clinical research,treatment efficacy prediction research and brain-muscle coupling research.Finally,limitations of NIRS are discussed.
基金supported by the Workstation of Academician ZENG Yi project(2014IC027)
文摘Objective To develop a rapid, highly sensitive, and quantitative method for the detection of NT-proBNP levels based on a near-infrared point-of-care diagnostic (POCT) device with wide scope. Methods The lateral flow assay (LFA) strip of NT-proBNP was first prepared to achieve rapid detection. Then, the antibody pairs for NT-proBNP were screened and labeled with the near-infrared fluorescent dye Dylight-800. The capture antibody was fixed on a nitrocellulose membrane by a scribing device. Serial dilutions of serum samples were prepared using NT-proBNP-free serum series. The prepared test strips, combined with a near-infrared POCT device, were validated by known concentrations of clinical samples. The POCT device gave the output of the ratio of the intensity of the fluorescence signal of the detection line to that of the quality control line. The relationship between the ratio value and the concentration of the specimen was plotted as a work curve. The results of 62 clinical specimens obtained from our method were compared in parallel with those obtained from the Roche E411 kit. Results Based on the log-log plot, the new method demonstrated that there was a good linear relationship between the ratio value and NT-proBNP concentrations ranging from 20 pg/mL to 10 ng/mL. The results of the 62 clinical specimens measured by our method showed a good linear correlation with those measured by the Roche E411 kit. Conclusion The new LFA detection method of NT-proBNP levels based on the near-infrared POCT device was rapid and highly sensitive with wide scope and was thus suitable for rapid and early clinical diagnosis of cardiac impairment.
文摘To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.
基金supported by the National Key Research and Development Program of China (No.2016YFA0201400)National Natural Science Foundation of China (No. 81671431)
文摘Objective: To evaluate the imaging potential of a novel near-infrared(NIR) probe conjugated to COC183 B2 monoclonal antibodies(MAb) in ovarian cancer(OC).Methods: The expression of OC183 B2 antigen in OC was determined by immunohistochemical(IHC) staining using tissue microarrays with the H-score system and immunofluorescence(IF) staining of tumor cell lines.Imaging probes with the NIR fluorescent dye cyanine 7(Cy7) conjugated to COC183 B2 Mab were chemically engineered. OC183 B2-positive human OC cells(SKOV3-Luc) were injected subcutaneously into BALB/c nude mice. Bioluminescent imaging(BLI) was performed to detect tumor location and growth. COC183 B2-Cy7 at 1.1,3.3, 10, or 30 μg were used for in vivo fluorescence imaging, and phosphate-buffered saline(PBS), free Cy7 dye and mouse isotype immunoglobulin G(IgG)-Cy7(delivered at the same doses as COC183 B2-Cy7) were used as controls.Results: The expression of OC183 B2 with a high H-score was more prevalent in OC tissue than fallopian tube(FT) tissue. Among 417 OC patients, the expression of OC183 B2 was significantly correlated with the histological subtype, histological grade, residual tumor size, relapse state and survival status. IF staining demonstrated that COC183 B2 specifically expressed in SKOV3 cells but not HeLa cells. In vivo NIR fluorescence imaging indicated that COC183 B2-Cy7 was mainly distributed in the xenograft and liver with optimal tumor-to-background(T/B)ratios in the xenograft at 30 μg dose. The highest fluorescent signals in the tumor were observed at 96 h postinjection(hpi). Ex vivo fluorescence imaging revealed the fluorescent signals mainly from the tumor and liver. IHC analysis confirmed that xenografts were OC183 B2 positive.Conclusions: COC183 B2 is a good candidate for NIR fluorescence imaging and imaging-guided surgery in OC.
基金This work was supported by National Natural Science Foundation of China and Shanghai Science Committee.
文摘Novel perylene bisimide dyes bay-functionalized with naphthalimide chromophores have been prepared conveniently by coupling of 1,8-naphthalimide and dibromoperylene bisimides. Their optical properties were investigated by UV-vis and fluorescence spectroscopy. The absorption spectra of these compounds showed wide spectral responses from 300 to 700 nm, which would be potentials for application as organic solar cells.
基金This research was funded by FONDAZIONE CASSA DI RISPARMIO DI CUNEO and is part of the project“QUALIPIEM-Innovative tools for the selection of meat quality in the Piemontese breed”,project number 2014/0249 coordinator Andrea Albera.
文摘Background:The possibility of assessing meat quality traits over the meat chain is strongly limited,especially in the context of selective breeding which requires a large number of phenotypes.The main objective of this study was to investigate the suitability of portable infrared spectrometers for phenotyping beef cattle aiming to genetically improving the quality of their meat.Meat quality traits(pH,color,water holding capacity,tenderness)were appraised on rib eye muscle samples of 1,327 Piemontese young bulls using traditional(i.e.,reference/gold standard)laboratory analyses;the same traits were also predicted from spectra acquired at the abattoir on the intact muscle surface of the same animals 1 d after slaughtering.Genetic parameters were estimated for both laboratory measures of meat quality traits and their spectra-based predictions.Results:The prediction performances of the calibration equations,assessed through external validation,were satisfactory for color traits(R^(2) from 0.52 to 0.80),low for pH and purge losses(R^(2) around 0.30),and very poor for cooking losses and tenderness(R^(2) below 0.20).Except for lightness and purge losses,the heritability estimates of most of the predicted traits were lower than those of the measured traits while the genetic correlations between measured and predicted traits were high(average value 0.81).Conclusions:Results showed that NIRS predictions of color traits,pH,and purge losses could be used as indicator traits for the indirect genetic selection of the reference quality phenotypes.Results for cooking losses were less effective,while the NIR predictions of tenderness were affected by a relatively high uncertainty of estimate.Overall,genetic selection of some meat quality traits,whose direct phenotyping is difficult,can benefit of the application of infrared spectrometers technology.