Background External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world.Recent entity-relationship embedding appro...Background External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world.Recent entity-relationship embedding approaches are deficient in representing some complex relations,resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.Methods To this end,we propose MKEAH:Multimodal Knowledge Extraction and Accumulation on Hyperplanes.To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information,two losses are proposed to learn the triplet representations from the complementary views:range loss and orthogonal loss.To interpret the capability of extracting topic-related knowledge,we present the Topic Similarity(TS)between topic and entity-relations.Results Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering.Our model outperformed state-of-the-art methods by 2.12%and 3.24%on two challenging knowledge-request datasets:OK-VQA and KRVQA,respectively.Conclusions The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.展开更多
In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and comput...In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and computing power advance,the issue of increasingly larger models and a growing number of parameters has surfaced.Consequently,model training has become more costly and less efficient.To enhance the efficiency and accuracy of the training process while reducing themodel volume,this paper proposes a first-order pruningmodel PAL-BERT based on the ALBERT model according to the characteristics of question-answering(QA)system and language model.Firstly,a first-order network pruning method based on the ALBERT model is designed,and the PAL-BERT model is formed.Then,the parameter optimization strategy of the PAL-BERT model is formulated,and the Mish function was used as an activation function instead of ReLU to improve the performance.Finally,after comparison experiments with traditional deep learning models TextCNN and BiLSTM,it is confirmed that PALBERT is a pruning model compression method that can significantly reduce training time and optimize training efficiency.Compared with traditional models,PAL-BERT significantly improves the NLP task’s performance.展开更多
The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challen...The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.展开更多
Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the ...Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.展开更多
To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,t...To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance.展开更多
Below is Problem 9 in Singapore MathematicalOlympiad 2001:Five people jointly bought a lottery ticketwhich won the first prize.They decided to keeptheir ticket in a locker installed with a number oflocks.Each person m...Below is Problem 9 in Singapore MathematicalOlympiad 2001:Five people jointly bought a lottery ticketwhich won the first prize.They decided to keeptheir ticket in a locker installed with a number oflocks.Each person may hold the keys to more thanone lock.What is the minimum number of locks nee-ded to serve the purpose that any 3 together will beable to open the locker but any 2 of them togetherwill not be able to open it ?A.6 B.9 C.10 D.展开更多
One day when Einstein was 1(?) his way home, a young man stopped him and wished 2(?) a word with him. Einstein granted his request. The young man asked, "How, Mr Einstein, can you 3(?) your fame? " The scien...One day when Einstein was 1(?) his way home, a young man stopped him and wished 2(?) a word with him. Einstein granted his request. The young man asked, "How, Mr Einstein, can you 3(?) your fame? " The scientist said, "It seems that you have been thinking of 4(?) famous every day." The young man nodded.展开更多
Based on personal observation and students’ self-reports, this article studies the characteristics presented by students in answering questions. It is found that Chinese culture plays an important part in explaining ...Based on personal observation and students’ self-reports, this article studies the characteristics presented by students in answering questions. It is found that Chinese culture plays an important part in explaining their specific behaviors. Hence, in order to lessen the negative effect of it, the author offers her own suggestions.展开更多
利用咸水或微咸水进行农田灌溉是缓解中国新疆地区农业水资源供需矛盾从而保障当地棉花产业可持续发展的主要途径之一。为了明确不同咸水灌溉措施对棉花产量及经济效益的影响,该研究通过2 a的棉花膜下滴灌大田试验和文献检索获取了新疆...利用咸水或微咸水进行农田灌溉是缓解中国新疆地区农业水资源供需矛盾从而保障当地棉花产业可持续发展的主要途径之一。为了明确不同咸水灌溉措施对棉花产量及经济效益的影响,该研究通过2 a的棉花膜下滴灌大田试验和文献检索获取了新疆9个不同试验地点的土壤、作物及灌溉等数据资料,评估作物产量-水盐胁迫响应分析模型(ANalytical Salt WatER,ANSWER)在新疆棉花产量评估中的适用性和可靠性,并结合经济收支平衡方法,模拟分析不同咸水灌溉措施(包括不同灌溉定额和灌溉水电导率的组合)对棉花产量与经济效益的影响。采用决定系数(R2)、均方根误差(root mean squared error,RMSE)、相对均方根误差(relative root mean squared error,RRMSE)评价模型精度。结果表明,在9个不同试验地点,ANSWER模型均可较准确地估算棉花的相对产量,其估算值与实测值之间的R^(2)≥0.54,RMSE≤0.14,RRMSE≤0.16;不同试验地点,优化获得的各个模型生物参数(与棉花根系吸水的水盐胁迫响应相关的参数)差异较小,变异系数的绝对值处于0.08~0.37之间;基于不同试验地点优化的各生物参数均值估算各地的棉花相对产量,其与实测值仍然吻合良好(R^(2)为0.59,RMSE为0.06,RRMSE为0.07);此外,当灌溉水电导率一定时,棉花净收益随灌溉定额增加呈先增后降的趋势,净收益达到峰值所需的灌溉定额随灌溉水电导率升高而迅速增加;当灌溉水电导率不大于10 dS/m时,通过加大供水量均可获得与淡水灌溉相当的净收益。研究可为新疆地区棉花产量与效益评估以及咸水资源合理开发利用提供理论依据。展开更多
This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilt...This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.展开更多
A passage retrieval strategy for web-based question answering (QA) systems is proposed in our QA system. It firstly analyzes the question based on semantic patterns to obtain its syntactic and semantic information a...A passage retrieval strategy for web-based question answering (QA) systems is proposed in our QA system. It firstly analyzes the question based on semantic patterns to obtain its syntactic and semantic information and then form initial queries. The queries are used to retrieve documents from the World Wide Web (WWW) using the Google search engine. The queries are then rewritten to form queries for passage retrieval in order to improve the precision. The relations between keywords in the question are employed in our query rewrite method. The experimental result on the question set of the TREC-2003 passage task shows that our system performs well for factoid questions.展开更多
基金Supported by National Nature Science Foudation of China(61976160,61906137,61976158,62076184,62076182)Shanghai Science and Technology Plan Project(21DZ1204800)。
文摘Background External knowledge representations play an essential role in knowledge-based visual question and answering to better understand complex scenarios in the open world.Recent entity-relationship embedding approaches are deficient in representing some complex relations,resulting in a lack of topic-related knowledge and redundancy in topic-irrelevant information.Methods To this end,we propose MKEAH:Multimodal Knowledge Extraction and Accumulation on Hyperplanes.To ensure that the lengths of the feature vectors projected onto the hyperplane compare equally and to filter out sufficient topic-irrelevant information,two losses are proposed to learn the triplet representations from the complementary views:range loss and orthogonal loss.To interpret the capability of extracting topic-related knowledge,we present the Topic Similarity(TS)between topic and entity-relations.Results Experimental results demonstrate the effectiveness of hyperplane embedding for knowledge representation in knowledge-based visual question answering.Our model outperformed state-of-the-art methods by 2.12%and 3.24%on two challenging knowledge-request datasets:OK-VQA and KRVQA,respectively.Conclusions The obvious advantages of our model in TS show that using hyperplane embedding to represent multimodal knowledge can improve its ability to extract topic-related knowledge.
基金Supported by Sichuan Science and Technology Program(2021YFQ0003,2023YFSY0026,2023YFH0004).
文摘In the field of natural language processing(NLP),there have been various pre-training language models in recent years,with question answering systems gaining significant attention.However,as algorithms,data,and computing power advance,the issue of increasingly larger models and a growing number of parameters has surfaced.Consequently,model training has become more costly and less efficient.To enhance the efficiency and accuracy of the training process while reducing themodel volume,this paper proposes a first-order pruningmodel PAL-BERT based on the ALBERT model according to the characteristics of question-answering(QA)system and language model.Firstly,a first-order network pruning method based on the ALBERT model is designed,and the PAL-BERT model is formed.Then,the parameter optimization strategy of the PAL-BERT model is formulated,and the Mish function was used as an activation function instead of ReLU to improve the performance.Finally,after comparison experiments with traditional deep learning models TextCNN and BiLSTM,it is confirmed that PALBERT is a pruning model compression method that can significantly reduce training time and optimize training efficiency.Compared with traditional models,PAL-BERT significantly improves the NLP task’s performance.
文摘The weapon and equipment operational requirement analysis(WEORA) is a necessary condition to win a future war,among which the acquisition of knowledge about weapons and equipment is a great challenge. The main challenge is that the existing weapons and equipment data fails to carry out structured knowledge representation, and knowledge navigation based on natural language cannot efficiently support the WEORA. To solve above problem, this research proposes a method based on question answering(QA) of weapons and equipment knowledge graph(WEKG) to construct and navigate the knowledge related to weapons and equipment in the WEORA. This method firstly constructs the WEKG, and builds a neutral network-based QA system over the WEKG by means of semantic parsing for knowledge navigation. Finally, the method is evaluated and a chatbot on the QA system is developed for the WEORA. Our proposed method has good performance in the accuracy and efficiency of searching target knowledge, and can well assist the WEORA.
基金supported by Sichuan Science and Technology Program(2023YFSY0026,2023YFH0004).
文摘Recent advancements in natural language processing have given rise to numerous pre-training language models in question-answering systems.However,with the constant evolution of algorithms,data,and computing power,the increasing size and complexity of these models have led to increased training costs and reduced efficiency.This study aims to minimize the inference time of such models while maintaining computational performance.It also proposes a novel Distillation model for PAL-BERT(DPAL-BERT),specifically,employs knowledge distillation,using the PAL-BERT model as the teacher model to train two student models:DPAL-BERT-Bi and DPAL-BERTC.This research enhances the dataset through techniques such as masking,replacement,and n-gram sampling to optimize knowledge transfer.The experimental results showed that the distilled models greatly outperform models trained from scratch.In addition,although the distilled models exhibit a slight decrease in performance compared to PAL-BERT,they significantly reduce inference time to just 0.25%of the original.This demonstrates the effectiveness of the proposed approach in balancing model performance and efficiency.
基金Microsoft Research Asia Internet Services in Academic Research Fund(No.FY07-RES-OPP-116)the Science and Technology Development Program of Tianjin(No.06YFGZGX05900)
文摘To improve question answering (QA) performance based on real-world web data sets,a new set of question classes and a general answer re-ranking model are defined.With pre-defined dictionary and grammatical analysis,the question classifier draws both semantic and grammatical information into information retrieval and machine learning methods in the form of various training features,including the question word,the main verb of the question,the dependency structure,the position of the main auxiliary verb,the main noun of the question,the top hypernym of the main noun,etc.Then the QA query results are re-ranked by question class information.Experiments show that the questions in real-world web data sets can be accurately classified by the classifier,and the QA results after re-ranking can be obviously improved.It is proved that with both semantic and grammatical information,applications such as QA, built upon real-world web data sets, can be improved,thus showing better performance.
文摘Below is Problem 9 in Singapore MathematicalOlympiad 2001:Five people jointly bought a lottery ticketwhich won the first prize.They decided to keeptheir ticket in a locker installed with a number oflocks.Each person may hold the keys to more thanone lock.What is the minimum number of locks nee-ded to serve the purpose that any 3 together will beable to open the locker but any 2 of them togetherwill not be able to open it ?A.6 B.9 C.10 D.
文摘One day when Einstein was 1(?) his way home, a young man stopped him and wished 2(?) a word with him. Einstein granted his request. The young man asked, "How, Mr Einstein, can you 3(?) your fame? " The scientist said, "It seems that you have been thinking of 4(?) famous every day." The young man nodded.
文摘Based on personal observation and students’ self-reports, this article studies the characteristics presented by students in answering questions. It is found that Chinese culture plays an important part in explaining their specific behaviors. Hence, in order to lessen the negative effect of it, the author offers her own suggestions.
文摘利用咸水或微咸水进行农田灌溉是缓解中国新疆地区农业水资源供需矛盾从而保障当地棉花产业可持续发展的主要途径之一。为了明确不同咸水灌溉措施对棉花产量及经济效益的影响,该研究通过2 a的棉花膜下滴灌大田试验和文献检索获取了新疆9个不同试验地点的土壤、作物及灌溉等数据资料,评估作物产量-水盐胁迫响应分析模型(ANalytical Salt WatER,ANSWER)在新疆棉花产量评估中的适用性和可靠性,并结合经济收支平衡方法,模拟分析不同咸水灌溉措施(包括不同灌溉定额和灌溉水电导率的组合)对棉花产量与经济效益的影响。采用决定系数(R2)、均方根误差(root mean squared error,RMSE)、相对均方根误差(relative root mean squared error,RRMSE)评价模型精度。结果表明,在9个不同试验地点,ANSWER模型均可较准确地估算棉花的相对产量,其估算值与实测值之间的R^(2)≥0.54,RMSE≤0.14,RRMSE≤0.16;不同试验地点,优化获得的各个模型生物参数(与棉花根系吸水的水盐胁迫响应相关的参数)差异较小,变异系数的绝对值处于0.08~0.37之间;基于不同试验地点优化的各生物参数均值估算各地的棉花相对产量,其与实测值仍然吻合良好(R^(2)为0.59,RMSE为0.06,RRMSE为0.07);此外,当灌溉水电导率一定时,棉花净收益随灌溉定额增加呈先增后降的趋势,净收益达到峰值所需的灌溉定额随灌溉水电导率升高而迅速增加;当灌溉水电导率不大于10 dS/m时,通过加大供水量均可获得与淡水灌溉相当的净收益。研究可为新疆地区棉花产量与效益评估以及咸水资源合理开发利用提供理论依据。
基金supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program of Suzhou University of Science and Technology,China(Grant No.SKYCX16 012)
文摘This paper focuses on studying the Noether symmetry and the conserved quantity with non-standard Lagrangians, namely exponential Lagrangians and power-law Lagrangians on time scales. Firstly, for each case, the Hamilton prin- ciple based on the action with non-standard Lagrangians on time scales is established, with which the corresponding Euler-Lagrange equation is given. Secondly, according to the invariance of the Hamilton action under the infinitesimal transformation, the Noether theorem for the dynamical system with non-standard Lagrangians on time scales is established. The proof of the theorem consists of two steps. First, it is proved under the infinitesimal transformations of a special one-parameter group without transforming time. Second, utilizing the technique of time-re-parameterization, the Noether theorem in a general form is obtained. The Noether-type conserved quantities with non-standard Lagrangians in both clas- sical and discrete cases are given. Finally, an example in Friedmann-Robertson-Walker spacetime and an example about second order Duffing equation are given to illustrate the application of the results.
基金Supported by the National Basic Research Program of China (2003CB317002)the Grant from City University of Hong Kong (7002137)
文摘A passage retrieval strategy for web-based question answering (QA) systems is proposed in our QA system. It firstly analyzes the question based on semantic patterns to obtain its syntactic and semantic information and then form initial queries. The queries are used to retrieve documents from the World Wide Web (WWW) using the Google search engine. The queries are then rewritten to form queries for passage retrieval in order to improve the precision. The relations between keywords in the question are employed in our query rewrite method. The experimental result on the question set of the TREC-2003 passage task shows that our system performs well for factoid questions.