With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coeff...With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time.展开更多
By constructing appropriate transformations and an extended elliptic sub-equation approach, we find some exact solutions of variable coefficient cubic-quintie nonlinear Schrodinger equation with an external potential,...By constructing appropriate transformations and an extended elliptic sub-equation approach, we find some exact solutions of variable coefficient cubic-quintie nonlinear Schrodinger equation with an external potential, which include bell and kink profile solitary wave solutions, singular solutions, triangular periodic wave solutions and so on.展开更多
In this letter, exact chirped multi-soliton solutions of the nonlinear Schrodinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, ...In this letter, exact chirped multi-soliton solutions of the nonlinear Schrodinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, an exponential distributed control system is considered, and some main features of solutions are shown. The results reveal that chirped soliton can all be nonlinearly compressed cleanly and efficiently in an optical fiber with no loss or gain, with the loss, or with the gain. Furthermore, under the same initial condition, compression of optical soliton in the optical fiber with the loss is the most dramatic. Also, under nonintegrable condition and finite initial perturbations, the evolution of chirped soliton has been demonstrated by simulating numerically.展开更多
We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponent...We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.展开更多
In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other ...In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other types of nonlinear physical models,we study the nonlinear Schrodinger equation(NLSE)with the generalized PT-symmetric Scarf-Ⅱpotential,which is an important physical model in many fields of nonlinear physics.Firstly,we choose three different initial values and the same Dinchlet boundaiy conditions to solve the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential via the PINN deep learning method,and the obtained results are compared with ttose denved by the toditional numencal methods.Then,we mvestigate effect of two factors(optimization steps and activation functions)on the performance of the PINN deep learning method in the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential.Ultimately,the data-driven coefficient discovery of the generalized PT-symmetric Scarf-Ⅱpotential or the dispersion and nonlinear items of the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential can be approximately ascertained by using the PINN deep learning method.Our results may be meaningful for further investigation of the nonlinear Schrodmger equation with the generalized PT-symmetric Scarf-Ⅱpotential in the deep learning.展开更多
In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrdinger(NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtain...In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrdinger(NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtained by determinant expression form. In particular, we present rogue waves from first to third-order through some figures and analyze their dynamics.展开更多
基金Supported by the Science Research Foundation of Zhanjiang Normal University(L0803)
文摘With the help of the variable-coefficient generalized projected Ricatti equation expansion method, we present exact solutions for the generalized (2+1)-dimensional nonlinear SchrSdinger equation with variable coefficients. These solutions include solitary wave solutions, soliton-like solutions and trigonometric function solutions. Among these solutions, some are found for the first time.
基金supported by National Natural Science Foundation of China under Grant No.10172056
文摘By constructing appropriate transformations and an extended elliptic sub-equation approach, we find some exact solutions of variable coefficient cubic-quintie nonlinear Schrodinger equation with an external potential, which include bell and kink profile solitary wave solutions, singular solutions, triangular periodic wave solutions and so on.
基金This work was supported by the National Natural Science Foundation of China (No. 60477026), the Provincial Youth Science Foundation of Shanxi (No. 20011015).
文摘In this letter, exact chirped multi-soliton solutions of the nonlinear Schrodinger (NLS) equation with varying coefficients are found. The explicit chirped one- and two-soliton solutions are generated. As an example, an exponential distributed control system is considered, and some main features of solutions are shown. The results reveal that chirped soliton can all be nonlinearly compressed cleanly and efficiently in an optical fiber with no loss or gain, with the loss, or with the gain. Furthermore, under the same initial condition, compression of optical soliton in the optical fiber with the loss is the most dramatic. Also, under nonintegrable condition and finite initial perturbations, the evolution of chirped soliton has been demonstrated by simulating numerically.
基金The project supported by Liu Hui Applied Mathematics Center of Nankai University and 985 Education Development Plan of Tianjin University
文摘We develop the three-step explicit and implicit schemes of exponential fitting methods. We use the three- step explicit exponential fitting scheme to predict an approximation, then use the three-step implicit exponential fitting scheme to correct this prediction. This combination is called the three-step predictor-corrector of exponential fitting method. The three-step predictor-corrector of exponential fitting method is applied to numerically compute the coupled nonlinear Schroedinger equation and the nonlinear Schroedinger equation with varying coefficients. The numerical results show that the scheme is highly accurate.
基金supported by the National Natural Science Foundation of China under Grant Nos.11775121,11435005the K.C.Wong Magna Fund of Ningbo University。
文摘In this paper,based on physics-informed neural networks(PINNs),a good deep learning neural network framework that can be used to effectively solve the nonlinear evolution partial differential equations(PDEs)and other types of nonlinear physical models,we study the nonlinear Schrodinger equation(NLSE)with the generalized PT-symmetric Scarf-Ⅱpotential,which is an important physical model in many fields of nonlinear physics.Firstly,we choose three different initial values and the same Dinchlet boundaiy conditions to solve the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential via the PINN deep learning method,and the obtained results are compared with ttose denved by the toditional numencal methods.Then,we mvestigate effect of two factors(optimization steps and activation functions)on the performance of the PINN deep learning method in the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential.Ultimately,the data-driven coefficient discovery of the generalized PT-symmetric Scarf-Ⅱpotential or the dispersion and nonlinear items of the NLSE with the generalized PT-symmetric Scarf-Ⅱpotential can be approximately ascertained by using the PINN deep learning method.Our results may be meaningful for further investigation of the nonlinear Schrodmger equation with the generalized PT-symmetric Scarf-Ⅱpotential in the deep learning.
基金Supported by the Hujiang Foundation of China under Grant No.B14005the National Natural Science Foundation of China under Grant No.11071164+4 种基金the Innovation Program of Shanghai Municipal Education Commission under Grant Nos.12YZ105 and 13ZZ118the Shanghai Leading Academic Discipline Project under Grant No.XTKX2012the Foundation of University Young Teachers Training Program of Shanghai Municipal Education Commission under Grant No.slg11029the Natural Science Foundation of Shanghai under Grant No.12ZR1446800Science and Technology Commission of Shanghai municipality and the National Natural Science Foundation of China under Grant Nos.11201302 and 11171220
文摘In this paper, the generalized Darboux transformation is constructed to variable coefficient nonlinear Schrdinger(NLS) equation. The N-th order rogue wave solution of this variable coefficient NLS equation is obtained by determinant expression form. In particular, we present rogue waves from first to third-order through some figures and analyze their dynamics.