期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Application of Exp-Function Method to Discrete Nonlinear Schrdinger Lattice Equation with Symbolic Computation 被引量:2
1
作者 JI Jie 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第12期1279-1282,共4页
In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a se... In this paper, we present an extended Exp-function method to differential-difference equation(s). With the help of symbolic computation, we solve discrete nonlinear Schrodinger lattice as an example, and obtain a series of general solutions in forms of Exp-function. 展开更多
关键词 Exp-function solutions discrete nonlinear SchrSdinger lattice equation
下载PDF
New Explicit Rational Solitary Wave Solutions for Discretized mKdV Lattice Equation 被引量:2
2
作者 YU Ya-Xuan WANG Qi ZHANG Hong-Qing 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第6X期1011-1014,共4页
In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic co... In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple. 展开更多
关键词 differential-difference equations discretized mkdv lattice equation solitary wave solution rational expand method
下载PDF
A Hierarchy of Lax Integrable Lattice Equations, Liouville Integrability and a NewIntegrable Symplectic Map 被引量:6
3
作者 XUXi-Xiang ZHANGYu-Feng 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第3期321-328,共8页
A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discr... A discrete matrix spectral problem and the associated hierarchy of Lax integrable lattice equations are presented, and it is shown that the resulting Lax integrable lattice equations are all Liouville integrable discrete Hamiltonian systems. A new integrable symplectic map is given by binary Bargmann constraint of the resulting hierarchy. Finally, an infinite set of conservation laws is given for the resulting hierarchy. 展开更多
关键词 lattice soliton equation discrete Hamiltonian system Liouville integrability nonlinearIZATION symplctic map conservation law
下载PDF
New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology 被引量:4
4
作者 M.M.Khader Sunil Kumar S.Abbasbandy 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期135-139,共5页
We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on t... We present a new reliable analytical study for solving the discontinued problems arising in nanotechnology. Such problems are presented as nonlinear differential-difference equations. The proposed method is based on the Laplace trans- form with the homotopy analysis method (HAM). This method is a powerful tool for solving a large amount of problems. This technique provides a series of functions which may converge to the exact solution of the problem. A good agreement between the obtained solution and some well-known results is obtained. 展开更多
关键词 discretized mkdv lattice equation nonlinear differential-difference equations Laplace transform homotopy analysis transform method
下载PDF
The Mixture of New Integral Transform and Homotopy Perturbation Method for Solving Discontinued Problems Arising in Nanotechnology
5
作者 Kunjan Shah Twinkle Singh 《Open Journal of Applied Sciences》 2015年第11期688-695,共8页
In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hy... In this paper, a reliable algorithm based on mixture of new integral transform and homotopy perturbation method is proposed to solve a nonlinear differential-difference equation arising in nanotechnology. Continuum hypothesis on nanoscales is invalid, and a differential-difference model is considered as an alternative approach to describing discontinued problems. The technique finds the solution without any discretization or restrictive assumptions and avoids the round-off errors. Comparison of the approximate solution with the exact one reveals that the method is very effective. It provides more realistic series solutions that converge very rapidly for nonlinear real physical problems. 展开更多
关键词 NEW Integral Transform HOMOTOPY Perturbation Method He’s POLYNOMIALS Discretized mkdv lattice equation NANOTECHNOLOGY
下载PDF
Self-Trapping in Discrete Nonlinear Schrodinger Equation with Next-Nearest Neighbor Interaction
6
作者 王燕 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第5期643-648,共6页
The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with nextnearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using l... The dynamical self-trapping of an excitation propagating on one-dimensional of different sizes with nextnearest neighbor (NNN) interaction is studied by means of an explicit fourth order symplectic integrator. Using localized initial conditions, the time-averaged occupation probability of the initial site is investigated which is a function of the degree of nonlinearity and the linear coupling strengths. The self-trapping transition occurs at larger values of the nonlinearity parameter as the NNN coupling strength of the lattice increases for fixed size. Furthermore, given NNN coupling strength, the self-trapping properties for different sizes are considered which are some different from the case with general nearest neighbor (NN) interaction. 展开更多
关键词 discrete nonlinear Schrodinger equation next-nearest neighbor interaction symplectic integrator nonlinear lattices
原文传递
非线性差分-微分方程的显示精确解 被引量:7
7
作者 李姝敏 斯仁道尔吉 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期251-256,共6页
将广义投影Riccati方程法应用于求解非线性差分-微分方程,并在符号计算机系统Maple帮助下得到了离散(2+1)维Toda lattice方程和离散mKdV lattice方程一些新的精确解,其中包括双曲函数解和三角函数解.
关键词 非线性差分-微分方程 RICCATI方程组 非线性离散(2+1)维Toda lattice方程 非线性离散mkdv lattice方程 精确解
下载PDF
广义Riccati方程有理展开法在非线性差分-微分方程中的应用 被引量:5
8
作者 陈向华 李姝敏 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期143-148,共6页
将广义Riccati方程有理展开法应用于求解非线性差分-微分方程.并在符号计算机系统Maple的帮助下,以离散的非线性mKdV lattice方程和离散的非线性(2+1)维Toda lattice方程为例,得到了一些新的精确解,其中包括双曲函数解和三角函数解.
关键词 非线性差分-微分方程Riccati方程 离散的非线性mkdv lattice方程 离散的非线性(2+1)维Toda lattice方程 精确解
下载PDF
非线性差分-微分方程的Jacobi椭圆函数解 被引量:4
9
作者 李姝敏 斯仁道尔吉 《西北师范大学学报(自然科学版)》 CAS 2007年第4期41-45,共5页
基于椭圆函数展开法和tanh函数法,引入构造非线性离散系统行波解的方法,并给出了离散mKdVlattice方程和(2+1)-维Hybrid lattice方程的一些新的椭圆函数解.
关键词 椭圆函数解 离散mkdv lattice方程 (2十1)-维Hybrid lattice方程 精确解
下载PDF
三Riccati方程的新展开法及其在差分-微分方程中的应用(英文) 被引量:2
10
作者 李姝敏 斯仁道尔吉 《内蒙古师范大学学报(自然科学汉文版)》 CAS 2008年第4期462-467,471,共7页
将三Riccati方程的新展开法应用于求解非线性差分-微分方程,借助符号计算系统Maple,得到了离散KdV方程和离散mKdVlattice方程的一些新的精确解,并具体给出了双曲函数解.
关键词 非线性差分-微分方程 Ricatti方程 离散KdV方程 非线性离散mkdv lattice方程 精确解
下载PDF
推广的Riccati方程法构造非线性差分-微分方程的精确解 被引量:1
11
作者 李姝敏 田强 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期376-382,共7页
将推广的Riccati方程法应用于求解非线性差分-微分方程求解领域.并在符号计算机系统Maple的帮助下,以离散的非线性(2+1)-维Toda lattice方程为应用实例,构造了该方程的一些新精确解,其中包括有理形式的双曲函数解和有理形式的三角函数... 将推广的Riccati方程法应用于求解非线性差分-微分方程求解领域.并在符号计算机系统Maple的帮助下,以离散的非线性(2+1)-维Toda lattice方程为应用实例,构造了该方程的一些新精确解,其中包括有理形式的双曲函数解和有理形式的三角函数周期解. 展开更多
关键词 非线性差分-微分方程 推广的Riccati方程法 离散的非线性(2+1)-维Toda lattice 方程 精确解
下载PDF
非线性离散的mKdV Lattice方程的Jacobi椭圆函数解 被引量:2
12
作者 高明 李姝敏 《阴山学刊(自然科学版)》 2011年第2期9-12,共4页
本文基于椭圆函数展开法,引入三个Jacobi椭圆函数分式形式的函数并将其应用于非线性离散的mKdV lattice方程,得到该方程一些椭圆函数精确解及退化后的双曲函数解和三角函数解。
关键词 JACOBI椭圆函数 非线性离散的mkdv lattice方程 精确解
原文传递
Jacobi椭圆函数构造mKdV Lattice方程的精确解 被引量:1
13
作者 张静 《阴山学刊(自然科学版)》 2011年第4期22-25,共4页
本文基于椭圆函数展开法和tanh函数法,将Jacobi椭圆函数的分式型展开法应用于非线性差分-微分方程,并以非线性离散的mKdV lattice方程为例,借助于符号计算系统Maple,给出了该方程更多的椭圆函数解及退化后的双曲函数解和三角函数解.
关键词 非线性差分-微分方程 JACOBI椭圆函数展开法 非线性离散的mkdv lattice方程 精确解
原文传递
离散可积系统在求解非线性晶格方程中的应用研究
14
作者 朱永芳 《九江学院学报(自然科学版)》 CAS 2023年第1期98-102,共5页
为了探究离散可积系统的可积性,找寻一种将其应用至非线性晶格方程求解中的有效途径,文章研究利用离散可积系统获取了Toda晶格方程的一个精确解。主要研究内容为:求解离散微分差分方程族的可积性及其Bargmann约束下的双非线性化,得到了... 为了探究离散可积系统的可积性,找寻一种将其应用至非线性晶格方程求解中的有效途径,文章研究利用离散可积系统获取了Toda晶格方程的一个精确解。主要研究内容为:求解离散微分差分方程族的可积性及其Bargmann约束下的双非线性化,得到了有限维完全可积的Hamilton系统.使用高阶Bargmann约束求解方程的Lax对和伴随Lax对,将方程双非线性化为一个可积辛映射和一个有限维Liouville可积的Hamilton系统.研究提供了一种求解Toda晶格方程精确解的思路,展现了双非线性化方法在孤立子理论研究领域的重要性。 展开更多
关键词 离散可积系统 非线性晶格方程 孤立子 Toda晶格方程 无限维Hamilton系统
下载PDF
A NEW INTEGRABLE SYMPLECTIC MAP ASSOCIATED WITH A DISCRETE MATRIX SPECTRAL PROBLEM
15
作者 XuXixiang DuanChunmei 《Annals of Differential Equations》 2005年第2期209-222,共14页
A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable sym... A hierarchy of lattice soliton equations is derived from a discrete matrix spectral problem. It is shown that the resulting lattice soliton equations are all discrete Liouville integrable systems. A new integrable symplectic map and a family of finite-dimensional integrable systems are given by the binary nonli-nearization method. The binary Bargmann constraint gives rise to a Backlund transformation for the resulting lattice soliton equations. 展开更多
关键词 lattice soliton equation discrete Hamiltonian system Lax pair binary nonlinearization symplectic map Backlund transformation
原文传递
Riccati方程法构造非线性差分-微分方程的精确解
16
作者 王强 《阴山学刊(自然科学版)》 2011年第4期9-14,共6页
本文将Riccati方程法应用于非线性差分-微分方程,并在符号计算机系统Maple的帮助下,构造了非线性离散的mKdV lattice方程和(2+1)-维的Tode lattice方程的双曲函数精确解和三角函数精确解。
关键词 RICCATI方程法 非线性离散的mkdv lattice方程 (2+1)-维的Tode lattice方程 精确解
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部