As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is c...As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is con...As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.展开更多
Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan M...Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan Mountains(CTM)have a high climate sensitivity,rendering the region particularly vulnerable to the effects of climate warming.In this study,we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset(1961-2014)and 24 global climate models(GCMs)of the Coupled Model Intercomparison Project Phase 6(CMIP6)to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale.Based on this,we conducted a systematic review of the interannual trends,dry-wet transitions(based on the standardized precipitation index(SPI)),and spatial distribution patterns of climate change in the CTM during 1961-2014.We further projected future temperature and precipitation changes over three terms(near-term(2021-2040),mid-term(2041-2060),and long-term(2081-2100))relative to the historical period(1961-2014)under four shared socio-economic pathway(SSP)scenarios(i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).It was found that the CTM had experienced significant warming and wetting from 1961 to 2014,and will also experience warming in the future(2021-2100).Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble(MME)from the CMIP6 GCMs.The MME simulation results indicated an apparent wetting in 2008,which occurred later than the wetting observed from the CN05.1 in 1989.The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM.Warming and wetting are more rapid in the northern part of the CTM.By the end of the 21st century,all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry-wet transitions.However,the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future,so the nature of the drought in the CTM will not change at all.Additionally,the projected summer precipitation shows negative correlation with the radiative forcing.This study holds practical implications for the awareness of climate change and subsequent research in the CTM.展开更多
The reconstruction of paleovegetation and paleoclimate requires an understanding of the relationships between surface pollen assemblages and modern vegetation and climate.Here,we analyzed the characteristics of surfac...The reconstruction of paleovegetation and paleoclimate requires an understanding of the relationships between surface pollen assemblages and modern vegetation and climate.Here,we analyzed the characteristics of surface pollen assemblages across different vegetation zones in the Tianshan Mountains.Using surface pollen analysis and vegetation sample surveys at 75 sites on the northern slopes of the Tianshan Mountains,we determined the correlation between the percentage of dominant pollen types and the corresponding vegetation cover.Redundancy analysis was used to investigate the relationships between surface pollen assemblages and environmental factors.Our results show that the Tianshan Mountains contain several distinct ecological regions,which can be divided into five main vegetation zones from low to high altitudes:mountain desert zone(Hutubi County(HTB):500-1300 m;Qitai County(QT):1000-1600 m),mountain steppe zone(HTB:1400-1600 m;QT:1650-1800 m),mountain forest zone(HTB:1650-2525 m;QT:1850-2450 m),subalpine meadow zone(HTB:2550-2600 m;QT:2500-2600 m),and alpine mat vegetation zone(HTB:2625-2700 m;QT:2625-2750 m).The surface pollen assemblages of different vegetation zones can accurately reflect the characteristics of the mountainous vegetation patterns on the northern slopes of the Tianshan Mountains when excluding the widespread occurrence of Chenopodiaceae,Artemisia,and Picea pollen.Both average annual precipitation(P_(ann))and annual average temperature(T_(ann))affect the distribution of surface pollen assemblages.Moreover,P_(ann) is the primary environmental factor affecting surface pollen assemblages in this region.A significant correlation exists between the pollen percentage and vegetation cover of Picea,Chenopodiaceae,Artemisia,and Asteraceae.Moreover,Picea,Chenopodiaceae,and Artemisia pollen are over-represented compared with their corresponding vegetation cover.The Asteraceae pollen percentage roughly reflects the distribution of a species within the local vegetation.These results have important implications for enhancing our understanding of the relationship between surface pollen assemblages and modern vegetation and climate.展开更多
In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization a...In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.展开更多
The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of eco...The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.展开更多
Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipita...Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipitation in north-west China is unclear.The dendrochronological method was used to study climate response sensitivity of radial growth of Picea schrenkiana from 158 trees at six sites during 1990-2020.The results show that climate warming and increased precipitation significantly promoted the growth of trees.The response to temperature first increased,then decreased.However,the response to increased precipitation and the self-calibrating Palmer Drought Severity Index(scPDSI)increased significantly.In most areas of the Tianshan Mountains,the proportion of trees under increased precipitation and scPDSI positive response was relatively high.Over time,small-diameter trees were strongly affected by drought stress.It is predicted that under continuous warming and increased precipitation,trees in most areas of the Tianshan Mountains,especially those with small diameters,will be more affected by precipitation.展开更多
Numerous studies have focused on modern hydroclimate and the modulated mechanisms in the Tianshan Mountains(TMs),arid central Asia.However,the detailed information of hydroclimatic processes beyond the instrumental pe...Numerous studies have focused on modern hydroclimate and the modulated mechanisms in the Tianshan Mountains(TMs),arid central Asia.However,the detailed information of hydroclimatic processes beyond the instrumental period is still scarce.This paper reconstructed a hydrology history from core sediments of the Dalongchi Lake in the Tianshan Mountains.The comparability between endmembers(EMs)of grain size and ICP-AES based geochemical elements in the lake sediments highlighted their availability for hydrological reconstructions.Hydrodynamic forces(EM1,EM4,Ti/Al and Li/Al),chemical weathering intensity[(Mg+Ca+K)/Al],salinity proxy(Mg/Ca)and redoxsensitive proxy(Fe/Mn)highly correlated with the first principal component(P<0.01),whereas paleoproductivity proxies(TN,TOC,Ba/Al,Zn/Al and Cu/Al)and C/N showed high loadings on the second principal component(P<0.05).The inferred hydrology progress was nonlinearly responded to temperature,precipitation and climate-dictated glaciers.Specifically,the water level didn’t always covary with the humidity because of glaciers.The maximum water level was the comprehensive result of glaciers melting and high humidity around 1830 CE.Thereafter,water level continually decreased with declining moisture at high temperature,implying a limited buffering capacity of glaciers in the Dalongchi Lake basin.EM3-indicated eolian activity intensity was caused by the behaviors of Siberian High because the latter intensified surface wind and the dust transportation.The hydrothermal patterns were characterized by warm/dry and cold/wet alternations in a long run although warm/wet pattern was identified from a short-term view.展开更多
The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can...The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.展开更多
The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous 'Red Sea type' ocean basin t...The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous 'Red Sea type' ocean basin that was developed on the northern margin of the Tianshan Carboniferous-Permian rift system in northwestern China. The late Early Carboniferous Bayan Gol ophiolite suite was emplaced in an Early Carboniferous rift volcano- sedimentary succession of shallow-marine to continental facies (Volcanics Unit). Ophiolitic rocks in the Bayan Gol area comprise ultramafic rocks, gabbros with associated plagiogranite veins, diorite, diabase, pillow basalts and massive lavas. The Early Carboniferous rifting and the opening process of the North Tianshan ocean basin produced mafic magmas in composition of tholeiite and minor amounts of evolved magmas. Compositions of trace elements and Nd, Sr and Pb isotopes reveal the presence of two distinct mantle sources: (1) the Early Carboniferous rift mafic lavas from the Volcanics Unit were generated by a relatively low degree of partial melting of an asthenospheric OIB-type intraplate source; (2) younger (late Early Carboniferous, ~324.8 Ma ago) mafic lavas from the Ophiolite Unit were formed in a relatively depleted MORB-like mantle source, located in the uppermost asthenosphere and then gradually mixed with melts from the asthenospheric OIB-like mantle. A slight interaction between asthenosphere-derived magmas and lithospheric mantle took place during ascent to the surface. Subsequently, the most depleted mafic lavas of the ophiolite assemblage were contaminated by upper-crustal components (seawater or carbonate crust).展开更多
Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited ...Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.展开更多
The characteristics of the Bolokenu-Aqikekuduk(Bo-A) fault,a right-lateral strike-slip fault that runs for more than 700 km long and obliquely cuts North Tianshan Mountains,are evaluated here based on remote sensing...The characteristics of the Bolokenu-Aqikekuduk(Bo-A) fault,a right-lateral strike-slip fault that runs for more than 700 km long and obliquely cuts North Tianshan Mountains,are evaluated here based on remote sensing data,and through an analysis of the results from field investigations as well as climate-geomorphic events. The fault is composed of a western segment with a NW strike and an eastern segment with a NWW strike.The western segment is nearly 250 km long,extending northwestward into Kazakhstan with a right-lateral strike-slip rate of 5 mm/a.This domain consists of 4-5 rupture sections,with 3-4 deformation belts,caused by ancient or historical earthquakes,and suggesting the potential for the occurrence of further strong earthquakes(with M≈7.5) in future. The eastern segment of the fault shows a right-lateral strike-slip rate of 1-1.4 mm/a,with the development of 3-4 deformation belts caused by ancient or historical earthquakes,and with a potential for future strong earthquake with M≈7.0. A typical strain partitioning style in the compression area has developed between the intermontane BoA fault and the piedmont thrust structures of Northern Tianshan Mountains,under the effect of oblique compression,as indicated by the piedmont thrust structure and the strike-slip fault in the mountains.展开更多
The foothill belts of Tianshan Mountains are about 280 km long and 60 km wide, and the study area extends from Kuitun city to Fukang city. They are transitional belts between mountains and plains, appearing in three r...The foothill belts of Tianshan Mountains are about 280 km long and 60 km wide, and the study area extends from Kuitun city to Fukang city. They are transitional belts between mountains and plains, appearing in three rows of folds with different morphologies and their age becoming younger from south to north. Based on GIS and RS methods, and materials of the previous researchers, this paper deals with the genetics of the foothill belts and their landscape features resulting from folding by neotectonic movements, and also describes their length, width and slope by remote sensing image interpretation. The characteristics of the foothill belts are found to be very important for the surrounding environment by preventing groundwater from flowing into plains, changing groundwater, increasing flow of surface runoff, in addition to their roles in protecting the surrounding environment. The purpose of this paper is to provide an in-depth understanding of the foothill belts and influence on its surrounding environment.展开更多
Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA), this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu B...Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA), this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Ba- sin, which is situated in the easternmost end of the Tianshan Mountains, Xinjiang Uygur Autonomous Region, China. For the zonal vegetation, community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors. The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude, soil pH and soil salt content. With increasing elevation, the soil pH and total salt content decrease but the contents of soil organic matter, soil water, total nitrogen and total phosphorus increase gradu- ally. In the CCA ordination diagrams, the sample plots and main species can be divided into five types according to their adaptations to the environmental factors. Type Ⅰ is composed of desert vegetation distributed on the low moun- tains, hills, plains and deserts below an elevation of 1900 m; type Ⅱ is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m, and includes steppe desert, desert steppe and wetland meadow; type Ⅲ is very sim- ply composed of only salinized meadow; type Ⅳ is distributed above an elevation of 2300 m, containing mountain steppe, meadow steppe, subalpine meadow and alpine meadow; type Ⅴ only contains salinized meadow. The results show that with increasing elevation, species combination changes from the xerophytic shrubs, semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.展开更多
Altitude is a useful indicator to examine patterns of forest structure and species diversity in relation to environmental factors.In this study,the altitude patterns of forest stand structure and species diversity wer...Altitude is a useful indicator to examine patterns of forest structure and species diversity in relation to environmental factors.In this study,the altitude patterns of forest stand structure and species diversity were analyzed across 20 plots in the Tianchi Nature Reserve,Northwest China.The results showed that mean stem height(Hm),maximum stem height(Hmax) and mean stem diameter at breast height(Dm) of Picea schrenkiana trees all decreased significantly with increasing altitude.Potential tree height(H*) decreased while stem taper increased significantly as altitude increased,suggesting remarkable altitudinal changes in biomass allocation between the diameter and height growth of Picea schrenkiana.Understory herbaceous richness increased significantly with increasing altitude,or with decreasing total basal area(TBA),Hm and stand volume(Volume).High light availability for understory herbs might account for the higher species richness at high altitude.Sorensen Index decreased significantly with the increase in altitude intervals,while the Cody Index demonstrated a converse pattern,suggesting greater differences in species composition with larger distances.展开更多
To provide information on vegetation patterns and altitudinal distributions of pollen assemblage in surface soil layers,their complicated relationships in a dryland mountain-basin system in northwestern China and a re...To provide information on vegetation patterns and altitudinal distributions of pollen assemblage in surface soil layers,their complicated relationships in a dryland mountain-basin system in northwestern China and a realistic basis for paleovegetational reconstruction,we investigated 86 vegetation quadrats and analyzed 80 soil samples from the surface soil layers along an altitudinal transect on the north slope of the Middle Tianshan Mountains from alpine cushion vegetation at 3,510 m near glacier to desert vegetation at 460 m in the Gurbantunggut Desert.According to surface pollen assemblages and the results of the detrended correspondence analysis,the transect can be divided into six major altitudinal pollen zones as alpine cushion vegetation,alpine and subalpine meadows,montane Picea forest,forest-steppe ecotone,Artemisia desert and typical desert,which basically reflect the characteristics of the mountainous vegetation patterns on the north slope of the Middle Tianshan Mountains.However,Picea pollen also exists outside the spruce forest,Chenopodiaceae and Artemisia pollen appeared above the elevation of 1,300 m,indicating that most of them might be introduced from lower elevations by upslope winds.Airborne pollen researches from three regions at different elevations further suggest that a high-frequency northwest anabatic wind has a remarkable influence on the transportation and dispersion of surface pollen in the area.展开更多
Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effe...Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effects of climate change and provide useful information for rational utilization of water resources, especially in the arid land where the shortage of water resources exists. However, the lack of data on evaporation led to difficulties in assessing the impacts of climate change on evaporation, especially in arid mountainous area. This study investigated the long-term variation of the pan-evaporation (Ep) measured by E601 type evaporation pan and its influencing climatic factors at both northern and southern slopes of the Tianshan Mountains in Xinjiang of China using the ensemble empirical mode decomposition method and Path analysis. The results revealed that Eps at both northern and southern slopes had obvious interdecadal variation within cycles of 3-4 and 7-8 years. Eps at both slopes sharply decreased in early 1980s, but increased after late 1990s. Path analysis showed that the 3-4 years cycle of Ep at the northern and southern slopes was mainly dependent upon actual water vapor pressure with a negative direct path coefficient of-0.515 and sunshine duration with a positive direct path coefficient of 0.370, respectively. The variation of Ep with cycle of 7-8 years at the northern slope was attributed to the wind speed with a direct path coefficient of 0.774. Average temperature had a direct path coefficient of 0.813 in 7-8 years cycle at the southern slope. The assessment of Ep variation and its causes provides information essential for a good understanding of hydrologic cycle and regional climate of arid mountainous regions in Xinjiang of China and offers a theoretical reference for distribution and utilization of water resources.展开更多
This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in ...This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in the oasis keep stable and their utilization efficiency can be maintained or gradually increased, the primary productivity could be continuously increased and the natural primary productivity keeped relatively stable. In this case, it is considered that the oasis is stable and its sustainable development can be achieved at regional scale. (2) Considering the availability of water resources in the oases, the oases on the alluvial-diluvial fans are highly stable. In the alluvial plain downstream of the groundwater overflowing zones the oases are moderately stable and in the lacustrine deltas or dry lacustrine deltas the oases are lowly stable. (3) Enlargement of oases and the increase of water resources and vegetation coverage in the oasis will certainly enhance the 'cold-island effect' of the oasis and increase the stability of oases.展开更多
The investigation of concentration characteristics of reference evapotranspiration(ETref) is important for water resources management. The concentration index(CI), concentration degree(CD) and concentration period(CP)...The investigation of concentration characteristics of reference evapotranspiration(ETref) is important for water resources management. The concentration index(CI), concentration degree(CD) and concentration period(CP) are used to investigate the concentration characteristics of ETref and the relationship between ETref concentration and precipitation concentration at sub-monthly timescale based on the daily climatic variables from 1966 to 2015 in 27 meteorological stations at the southern and northern slopes of Tianshan Mountains in China. It was found that the CI of ETref is about 0.40 and less concentrated than precipitation in the study area. At the southern slope, the maximum ETref appears in late June and is earlier than the maximum precipitation(early July), ETref distributes more equally than precipitation, and the CI, CD and CP of these two variables do not show significant change based on the Mann–Kendall test. At the northern slope, both the maximum ETref and precipitation appear in early July, and ETref is more dispersed than precipitation. During the study period, the maximum ETref at the northern slope tends to appear earlier due to the impacts of wind speed, relative humidity, sunshine duration, and air temperature. ETref concentration does not match the precipitation concentration in the study area, particularly at the southern slope. The mismatch between ETref and precipitation concentration within a year reveals the water resources pressure on environmental, social and economic sustainability in the study area.展开更多
The distribution, optically stimulated luminescence dating and granulometric properties suggest that the loess on the northern flank of Tian Shan should be divided into two types. One which is like mantle and is named...The distribution, optically stimulated luminescence dating and granulometric properties suggest that the loess on the northern flank of Tian Shan should be divided into two types. One which is like mantle and is named type A, is located on the windward slopes and dated to about 54.5±5.73 Ka. The other, called type B, lies flatly on the terraces of the rivers or low hills and penetrated 30.8±2.05 Ka ago. Here we study the origin and the age of two types of loess, and a model of loess formation is proposed. The dust was entrained from the Gobi Desert located to the north of Tian Shan by the monsoon from Mongolia, obstructed by the high mountains and deposited on the windward slopes of the mountains. The rivers and flows then transported the aeolian loess to low terraces and piedmont alluvial plains.展开更多
基金This study was supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global cli-mate warming,the Tianshan mountains has experienced sev-eral ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Moun-tains was used to reconstruct the summer(June-August)maximum temperature(T_(max6-8))variations from 1718 to 2017.The reconstruction explained 53.1% of the variance in the observed T_(max6-8).Over the past 300 years,the T_(max6-8)reconstruction showed clear interannual and decadal vari-abilities.There was a significant warming trend(0.18°C/decade)after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The T_(max6-8) variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the sum-mer North Atlantic Oscillation.This study reveals that cli-mate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mech-anisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research(2019QZKK0101)the China Desert Meteorological Science Research Foundation(Sqj2022012)+3 种基金the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0307)the National Natural Science Foundation of China(42361144712)the Chinese Academy of Sciences(XDB40010300)the State Key Laboratory of Loess and Quaternary Geology,Institute of Earth Environment,CAS(SKLLQG2022).
文摘As one of the regions most affected by global climate warming,the Tianshan mountains has experienced several ecological crises,including retreating glaciers and water deficits.Climate warming in these mountains is considered mainly to be caused by increases in minimum temperatures and winter temperatures,while the influence of maximum temperatures is unclear.In this study,a 300-year tree-ring chronology developed from the Western Tianshan Mountains was used to reconstruct the summer(June-August)maximum temperature(Tmax6-8) variations from 1718 to2017.The reconstruction explained 53.1% of the variance in the observed Tmax6-8.Over the past 300 years,the Tmax6-8reconstruction showed clear interannual and decadal variabilities.There was a significant warming trend(0.18 ℃/decade) after the 1950s,which was close to the increasing rates of the minimum and mean temperatures.The increase in maximum temperature was also present over the whole Tianshan mountains and its impact on climate warming has increased.The Tmax6-8variations in the Western Tianshan mountains were influenced by frequent volcanic eruptions combined with the influence of solar activity and the summer North Atlantic Oscillation.This study reveals that climate warming is significantly influenced by the increase in maximum temperatures and clarifies possible driving mechanisms of temperature variations in the Western Tianshan mountains which should aid climate predictions.
基金supported by the National Natural Science Foundation of China(42261026,41971094,42161025)the Gansu Provincial Science and Technology Program(22ZD6FA005)+1 种基金the Higher Education Innovation Foundation of Education Department of Gansu Province(2022A041)the open foundation of Xinjiang Key Laboratory of Water Cycle and Utilization in Arid Zone(XJYS0907-2023-01).
文摘Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan Mountains(CTM)have a high climate sensitivity,rendering the region particularly vulnerable to the effects of climate warming.In this study,we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset(1961-2014)and 24 global climate models(GCMs)of the Coupled Model Intercomparison Project Phase 6(CMIP6)to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale.Based on this,we conducted a systematic review of the interannual trends,dry-wet transitions(based on the standardized precipitation index(SPI)),and spatial distribution patterns of climate change in the CTM during 1961-2014.We further projected future temperature and precipitation changes over three terms(near-term(2021-2040),mid-term(2041-2060),and long-term(2081-2100))relative to the historical period(1961-2014)under four shared socio-economic pathway(SSP)scenarios(i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).It was found that the CTM had experienced significant warming and wetting from 1961 to 2014,and will also experience warming in the future(2021-2100).Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble(MME)from the CMIP6 GCMs.The MME simulation results indicated an apparent wetting in 2008,which occurred later than the wetting observed from the CN05.1 in 1989.The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM.Warming and wetting are more rapid in the northern part of the CTM.By the end of the 21st century,all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry-wet transitions.However,the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future,so the nature of the drought in the CTM will not change at all.Additionally,the projected summer precipitation shows negative correlation with the radiative forcing.This study holds practical implications for the awareness of climate change and subsequent research in the CTM.
基金supported by the National Natural Science Foundation of China(42071102).
文摘The reconstruction of paleovegetation and paleoclimate requires an understanding of the relationships between surface pollen assemblages and modern vegetation and climate.Here,we analyzed the characteristics of surface pollen assemblages across different vegetation zones in the Tianshan Mountains.Using surface pollen analysis and vegetation sample surveys at 75 sites on the northern slopes of the Tianshan Mountains,we determined the correlation between the percentage of dominant pollen types and the corresponding vegetation cover.Redundancy analysis was used to investigate the relationships between surface pollen assemblages and environmental factors.Our results show that the Tianshan Mountains contain several distinct ecological regions,which can be divided into five main vegetation zones from low to high altitudes:mountain desert zone(Hutubi County(HTB):500-1300 m;Qitai County(QT):1000-1600 m),mountain steppe zone(HTB:1400-1600 m;QT:1650-1800 m),mountain forest zone(HTB:1650-2525 m;QT:1850-2450 m),subalpine meadow zone(HTB:2550-2600 m;QT:2500-2600 m),and alpine mat vegetation zone(HTB:2625-2700 m;QT:2625-2750 m).The surface pollen assemblages of different vegetation zones can accurately reflect the characteristics of the mountainous vegetation patterns on the northern slopes of the Tianshan Mountains when excluding the widespread occurrence of Chenopodiaceae,Artemisia,and Picea pollen.Both average annual precipitation(P_(ann))and annual average temperature(T_(ann))affect the distribution of surface pollen assemblages.Moreover,P_(ann) is the primary environmental factor affecting surface pollen assemblages in this region.A significant correlation exists between the pollen percentage and vegetation cover of Picea,Chenopodiaceae,Artemisia,and Asteraceae.Moreover,Picea,Chenopodiaceae,and Artemisia pollen are over-represented compared with their corresponding vegetation cover.The Asteraceae pollen percentage roughly reflects the distribution of a species within the local vegetation.These results have important implications for enhancing our understanding of the relationship between surface pollen assemblages and modern vegetation and climate.
基金supported by the Third Xinjiang Scientific Expedition Program (2021xjkk0905).
文摘In the Anthropocene era,human activities have become increasingly complex and diversified.The natural ecosystems need higher ecological resilience to ensure regional sustainable development due to rapid urbanization and industrialization as well as other intensified human activities,especially in arid and semi-arid areas.In the study,we chose the economic belt on the northern slope of the Tianshan Mountains(EBNSTM)in Xinjiang Uygur Autonomous Region of China as a case study.By collecting geographic data and statistical data from 2010 and 2020,we constructed an ecological resilience assessment model based on the ecosystem habitat quality(EHQ),ecosystem landscape stability(ELS),and ecosystem service value(ESV).Further,we analyzed the temporal and spatial variation characteristics of ecological resilience in the EBNSTM from 2010 to 2020 by spatial autocorrelation analysis,and explored its responses to climate change and human activities using the geographically weighted regression(GWR)model.The results showed that the ecological resilience of the EBNSTM was at a low level and increased from 0.2732 to 0.2773 during 2010–2020.The spatial autocorrelation analysis of ecological resilience exhibited a spatial heterogeneity characteristic of"high in the western region and low in the eastern region",and the spatial clustering trend was enhanced during the study period.Desert,Gobi and rapidly urbanized areas showed low level of ecological resilience,and oasis and mountain areas exhibited high level of ecological resilience.Climate factors had an important impact on ecological resilience.Specifically,average annual temperature and annual precipitation were the key climate factors that improved ecological resilience,while average annual evapotranspiration was the main factor that blocked ecological resilience.Among the human activity factors,the distance from the main road showed a negative correlation with ecological resilience.Both night light index and PM2.5 concentration were negatively correlated with ecological resilience in the areas with better ecological conditions,whereas in the areas with poorer ecological conditions,the correlations were positive.The research findings could provide a scientific reference for protecting the ecological environment and promoting the harmony and stability of the human-land relationship in arid and semi-arid areas.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(2021xjkk0905).
文摘The exchanges between cities and counties in the northern slope economic belt of Tianshan Mountains(NSEBTM)are increasingly frequent and the economic linkages are increasingly close,but the spatial distribution of economic development and linkages among the cities and counties within NSEBTM is uneven.Therefore,it is of great significance to study the evolution of spatial-temporal pattern of the economic linkage network of cities and counties on NSEBTM to promote the coordinated and integrated development of the regional economy on NSEBTM.In this study,we used the modified gravity model and social network analysis method to analyze the spatio-temporal evolution characteristics of the economic linkage network structure of cities and counties on NSEBTM in 2000,2010,and 2020.The results showed that the comprehensive development quality level of cities and counties on NSEBTM increased from 2000 to 2020,its growth rate also increased,and its gap between cities and counties continued expanding.Both the spatial distribution patterns of the comprehensive development quality level of cities and counties on NSEBTM in 2000 and 2010 were presented as“high in the middle and low at both ends”,while the spatial distribution pattern of 2020 was exhibited as“high value and low value staggered”.The total amount of external economic linkages of cities and counties on NSEBTM showed an obvious upward trend,and its gap between cities and counties continued expanding,presenting a pattern of“a strong middle section and weak ends”.The direction of economic linkages of NSEBTM existed obvious central orientation and geographical proximity.The density of economic linkage network of NSEBTM increased from 2000 to 2020,and the structure of economic linkage network changed from single-core structure centered with Urumqi City to multicore structure centered with Urumqi City,Karamay City,Shihezi City,and Changji City,shifting from unbalanced development to balanced development.In the future,we should accelerate the construction of urban agglomeration on NSEBTM,cultivate a modern Urumqi metropolitan area,improve comprehensive development quality of the cities and counties at the eastern and western ends,strengthen the intensity of economic linkages between cities and counties,optimize the economic linkage network,and promote the coordinated and integrated development of regional economy.
基金funded by the National Natural Science Foundation of China(No.31971460 and 32271646)the National Key Research and Development Program of China(2021YFD2200401)。
文摘Climate change significantly impacts forest ecosystems in arid and semi-arid regions.However,spatiotemporal patterns of climate-sensitive changes in individual tree growth under increased climate warming and precipitation in north-west China is unclear.The dendrochronological method was used to study climate response sensitivity of radial growth of Picea schrenkiana from 158 trees at six sites during 1990-2020.The results show that climate warming and increased precipitation significantly promoted the growth of trees.The response to temperature first increased,then decreased.However,the response to increased precipitation and the self-calibrating Palmer Drought Severity Index(scPDSI)increased significantly.In most areas of the Tianshan Mountains,the proportion of trees under increased precipitation and scPDSI positive response was relatively high.Over time,small-diameter trees were strongly affected by drought stress.It is predicted that under continuous warming and increased precipitation,trees in most areas of the Tianshan Mountains,especially those with small diameters,will be more affected by precipitation.
基金financially supported by the National Natural Science Foundation of China(No.41902024U1203821L08)+3 种基金the Chongqing Science and Technology Commission(cstc2019jcyjmsxmX0656)the Talent Introduction Program of Chongqing Three Gorges University(17RC08)the Research Center for Sustainable Development of the Three Gorges Reservoir Area(18sxxyjd12)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2022447)。
文摘Numerous studies have focused on modern hydroclimate and the modulated mechanisms in the Tianshan Mountains(TMs),arid central Asia.However,the detailed information of hydroclimatic processes beyond the instrumental period is still scarce.This paper reconstructed a hydrology history from core sediments of the Dalongchi Lake in the Tianshan Mountains.The comparability between endmembers(EMs)of grain size and ICP-AES based geochemical elements in the lake sediments highlighted their availability for hydrological reconstructions.Hydrodynamic forces(EM1,EM4,Ti/Al and Li/Al),chemical weathering intensity[(Mg+Ca+K)/Al],salinity proxy(Mg/Ca)and redoxsensitive proxy(Fe/Mn)highly correlated with the first principal component(P<0.01),whereas paleoproductivity proxies(TN,TOC,Ba/Al,Zn/Al and Cu/Al)and C/N showed high loadings on the second principal component(P<0.05).The inferred hydrology progress was nonlinearly responded to temperature,precipitation and climate-dictated glaciers.Specifically,the water level didn’t always covary with the humidity because of glaciers.The maximum water level was the comprehensive result of glaciers melting and high humidity around 1830 CE.Thereafter,water level continually decreased with declining moisture at high temperature,implying a limited buffering capacity of glaciers in the Dalongchi Lake basin.EM3-indicated eolian activity intensity was caused by the behaviors of Siberian High because the latter intensified surface wind and the dust transportation.The hydrothermal patterns were characterized by warm/dry and cold/wet alternations in a long run although warm/wet pattern was identified from a short-term view.
文摘The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.
基金the Land and Resources Survey Project of China(Grant Nos.200113000022,200313000063) the National Namral Science Foundation of China fGrant No.40472044).
文摘The Bayan Gol ophiolite fragment is a portion of the North Tianshan Early Carboniferous ophiolite belt. This ophiolite belt represents a geological record of an Early Carboniferous 'Red Sea type' ocean basin that was developed on the northern margin of the Tianshan Carboniferous-Permian rift system in northwestern China. The late Early Carboniferous Bayan Gol ophiolite suite was emplaced in an Early Carboniferous rift volcano- sedimentary succession of shallow-marine to continental facies (Volcanics Unit). Ophiolitic rocks in the Bayan Gol area comprise ultramafic rocks, gabbros with associated plagiogranite veins, diorite, diabase, pillow basalts and massive lavas. The Early Carboniferous rifting and the opening process of the North Tianshan ocean basin produced mafic magmas in composition of tholeiite and minor amounts of evolved magmas. Compositions of trace elements and Nd, Sr and Pb isotopes reveal the presence of two distinct mantle sources: (1) the Early Carboniferous rift mafic lavas from the Volcanics Unit were generated by a relatively low degree of partial melting of an asthenospheric OIB-type intraplate source; (2) younger (late Early Carboniferous, ~324.8 Ma ago) mafic lavas from the Ophiolite Unit were formed in a relatively depleted MORB-like mantle source, located in the uppermost asthenosphere and then gradually mixed with melts from the asthenospheric OIB-like mantle. A slight interaction between asthenosphere-derived magmas and lithospheric mantle took place during ascent to the surface. Subsequently, the most depleted mafic lavas of the ophiolite assemblage were contaminated by upper-crustal components (seawater or carbonate crust).
基金National Basic Research Program of China, No.2009CB825105National Natural Science Foundation of China, No.40671015
文摘Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.
基金the National 973 Plan"The mechanism of Wenchuan earthquake and regional geodynamics of large area"(Project No.2008CB425703)
文摘The characteristics of the Bolokenu-Aqikekuduk(Bo-A) fault,a right-lateral strike-slip fault that runs for more than 700 km long and obliquely cuts North Tianshan Mountains,are evaluated here based on remote sensing data,and through an analysis of the results from field investigations as well as climate-geomorphic events. The fault is composed of a western segment with a NW strike and an eastern segment with a NWW strike.The western segment is nearly 250 km long,extending northwestward into Kazakhstan with a right-lateral strike-slip rate of 5 mm/a.This domain consists of 4-5 rupture sections,with 3-4 deformation belts,caused by ancient or historical earthquakes,and suggesting the potential for the occurrence of further strong earthquakes(with M≈7.5) in future. The eastern segment of the fault shows a right-lateral strike-slip rate of 1-1.4 mm/a,with the development of 3-4 deformation belts caused by ancient or historical earthquakes,and with a potential for future strong earthquake with M≈7.0. A typical strain partitioning style in the compression area has developed between the intermontane BoA fault and the piedmont thrust structures of Northern Tianshan Mountains,under the effect of oblique compression,as indicated by the piedmont thrust structure and the strike-slip fault in the mountains.
文摘The foothill belts of Tianshan Mountains are about 280 km long and 60 km wide, and the study area extends from Kuitun city to Fukang city. They are transitional belts between mountains and plains, appearing in three rows of folds with different morphologies and their age becoming younger from south to north. Based on GIS and RS methods, and materials of the previous researchers, this paper deals with the genetics of the foothill belts and their landscape features resulting from folding by neotectonic movements, and also describes their length, width and slope by remote sensing image interpretation. The characteristics of the foothill belts are found to be very important for the surrounding environment by preventing groundwater from flowing into plains, changing groundwater, increasing flow of surface runoff, in addition to their roles in protecting the surrounding environment. The purpose of this paper is to provide an in-depth understanding of the foothill belts and influence on its surrounding environment.
基金Under the auspices of National Natural Science Foundation of China(No.41171157)
文摘Based on data from 22 sample plots and applying the Canonical Correspondence Analysis (CCA), this paper discusses the vegetation-environment relationships between the northern slope of Karlik Mountain and Naomaohu Ba- sin, which is situated in the easternmost end of the Tianshan Mountains, Xinjiang Uygur Autonomous Region, China. For the zonal vegetation, community diversity of mountain vegetation is higher than that of the desert vegetation due to environmental factors. The CCA ordination diagram revealed that the composition and distribution of vegetation types are mainly determined by altitude, soil pH and soil salt content. With increasing elevation, the soil pH and total salt content decrease but the contents of soil organic matter, soil water, total nitrogen and total phosphorus increase gradu- ally. In the CCA ordination diagrams, the sample plots and main species can be divided into five types according to their adaptations to the environmental factors. Type Ⅰ is composed of desert vegetation distributed on the low moun- tains, hills, plains and deserts below an elevation of 1900 m; type Ⅱ is distributed in the mountain and desert ecotone with an elevation of 1900-2300 m, and includes steppe desert, desert steppe and wetland meadow; type Ⅲ is very sim- ply composed of only salinized meadow; type Ⅳ is distributed above an elevation of 2300 m, containing mountain steppe, meadow steppe, subalpine meadow and alpine meadow; type Ⅴ only contains salinized meadow. The results show that with increasing elevation, species combination changes from the xerophytic shrubs, semi-shrubs and herbs distributed in the low altitude zone with arid climate to the cold-tolerant perennial herbs growing in the high altitudinal zone with cold climate.
基金supported by the National Basic Research Program of China (2010CB950602)
文摘Altitude is a useful indicator to examine patterns of forest structure and species diversity in relation to environmental factors.In this study,the altitude patterns of forest stand structure and species diversity were analyzed across 20 plots in the Tianchi Nature Reserve,Northwest China.The results showed that mean stem height(Hm),maximum stem height(Hmax) and mean stem diameter at breast height(Dm) of Picea schrenkiana trees all decreased significantly with increasing altitude.Potential tree height(H*) decreased while stem taper increased significantly as altitude increased,suggesting remarkable altitudinal changes in biomass allocation between the diameter and height growth of Picea schrenkiana.Understory herbaceous richness increased significantly with increasing altitude,or with decreasing total basal area(TBA),Hm and stand volume(Volume).High light availability for understory herbs might account for the higher species richness at high altitude.Sorensen Index decreased significantly with the increase in altitude intervals,while the Cody Index demonstrated a converse pattern,suggesting greater differences in species composition with larger distances.
基金jointly funded by the National Natural Science Foundation of China (40972212,41272386,41572331,90102009,31590822)the Scientific Research Foundation for the Young Scientists of State Key Laboratory of Vegetation and Environmental Change,Institute of Botany,Chinese Academy of Sciences and the Returned Overseas Chinese Scholars,Ministry of Education of the People’s Republic of China and the National Postdoc Science Foundation of China (2003033253)
文摘To provide information on vegetation patterns and altitudinal distributions of pollen assemblage in surface soil layers,their complicated relationships in a dryland mountain-basin system in northwestern China and a realistic basis for paleovegetational reconstruction,we investigated 86 vegetation quadrats and analyzed 80 soil samples from the surface soil layers along an altitudinal transect on the north slope of the Middle Tianshan Mountains from alpine cushion vegetation at 3,510 m near glacier to desert vegetation at 460 m in the Gurbantunggut Desert.According to surface pollen assemblages and the results of the detrended correspondence analysis,the transect can be divided into six major altitudinal pollen zones as alpine cushion vegetation,alpine and subalpine meadows,montane Picea forest,forest-steppe ecotone,Artemisia desert and typical desert,which basically reflect the characteristics of the mountainous vegetation patterns on the north slope of the Middle Tianshan Mountains.However,Picea pollen also exists outside the spruce forest,Chenopodiaceae and Artemisia pollen appeared above the elevation of 1,300 m,indicating that most of them might be introduced from lower elevations by upslope winds.Airborne pollen researches from three regions at different elevations further suggest that a high-frequency northwest anabatic wind has a remarkable influence on the transportation and dispersion of surface pollen in the area.
基金funded by the National Basic Research Program of China(2012CB956204)the Special Funds for Key Laboratories of the Xinjiang Uygur Autonomous Region(2014KL015)
文摘Evaporation controlled by meteorological parameters plays a crucial role in hydrology, meteorology and water resources management. An insight view of long-term variation in evaporation will help understanding the effects of climate change and provide useful information for rational utilization of water resources, especially in the arid land where the shortage of water resources exists. However, the lack of data on evaporation led to difficulties in assessing the impacts of climate change on evaporation, especially in arid mountainous area. This study investigated the long-term variation of the pan-evaporation (Ep) measured by E601 type evaporation pan and its influencing climatic factors at both northern and southern slopes of the Tianshan Mountains in Xinjiang of China using the ensemble empirical mode decomposition method and Path analysis. The results revealed that Eps at both northern and southern slopes had obvious interdecadal variation within cycles of 3-4 and 7-8 years. Eps at both slopes sharply decreased in early 1980s, but increased after late 1990s. Path analysis showed that the 3-4 years cycle of Ep at the northern and southern slopes was mainly dependent upon actual water vapor pressure with a negative direct path coefficient of-0.515 and sunshine duration with a positive direct path coefficient of 0.370, respectively. The variation of Ep with cycle of 7-8 years at the northern slope was attributed to the wind speed with a direct path coefficient of 0.774. Average temperature had a direct path coefficient of 0.813 in 7-8 years cycle at the southern slope. The assessment of Ep variation and its causes provides information essential for a good understanding of hydrologic cycle and regional climate of arid mountainous regions in Xinjiang of China and offers a theoretical reference for distribution and utilization of water resources.
基金funded by one of National Basic Research Program of China (Grant No.2009CB825105)the National Natural Science Foundation of China (Grant No.40671015)
文摘This paper discusses oasis stability at regional scale with a case study in the northern slope areas of the Tianshan Mountains (NSTM). The results showed certain significant aspects. (1) As long as water resources in the oasis keep stable and their utilization efficiency can be maintained or gradually increased, the primary productivity could be continuously increased and the natural primary productivity keeped relatively stable. In this case, it is considered that the oasis is stable and its sustainable development can be achieved at regional scale. (2) Considering the availability of water resources in the oases, the oases on the alluvial-diluvial fans are highly stable. In the alluvial plain downstream of the groundwater overflowing zones the oases are moderately stable and in the lacustrine deltas or dry lacustrine deltas the oases are lowly stable. (3) Enlargement of oases and the increase of water resources and vegetation coverage in the oasis will certainly enhance the 'cold-island effect' of the oasis and increase the stability of oases.
基金funded by the West Light Foundation of the Chinese Academy of Sciences (2016–QNXZ–B–13)the open project of the Xinjiang Uygur Autonomous Region Key Laboratory (2017D04010)+1 种基金the natural science foundation of Xinjiang Uygur Autonomous Region (2017D01B52)the Pan-Third Pole Environment Study for a Green Silk Road (PanTPE) (No. XDA2004030202)
文摘The investigation of concentration characteristics of reference evapotranspiration(ETref) is important for water resources management. The concentration index(CI), concentration degree(CD) and concentration period(CP) are used to investigate the concentration characteristics of ETref and the relationship between ETref concentration and precipitation concentration at sub-monthly timescale based on the daily climatic variables from 1966 to 2015 in 27 meteorological stations at the southern and northern slopes of Tianshan Mountains in China. It was found that the CI of ETref is about 0.40 and less concentrated than precipitation in the study area. At the southern slope, the maximum ETref appears in late June and is earlier than the maximum precipitation(early July), ETref distributes more equally than precipitation, and the CI, CD and CP of these two variables do not show significant change based on the Mann–Kendall test. At the northern slope, both the maximum ETref and precipitation appear in early July, and ETref is more dispersed than precipitation. During the study period, the maximum ETref at the northern slope tends to appear earlier due to the impacts of wind speed, relative humidity, sunshine duration, and air temperature. ETref concentration does not match the precipitation concentration in the study area, particularly at the southern slope. The mismatch between ETref and precipitation concentration within a year reveals the water resources pressure on environmental, social and economic sustainability in the study area.
基金sponsored by the National Key Basic Research Program of China(2007CB411305) to Z.J.Guo
文摘The distribution, optically stimulated luminescence dating and granulometric properties suggest that the loess on the northern flank of Tian Shan should be divided into two types. One which is like mantle and is named type A, is located on the windward slopes and dated to about 54.5±5.73 Ka. The other, called type B, lies flatly on the terraces of the rivers or low hills and penetrated 30.8±2.05 Ka ago. Here we study the origin and the age of two types of loess, and a model of loess formation is proposed. The dust was entrained from the Gobi Desert located to the north of Tian Shan by the monsoon from Mongolia, obstructed by the high mountains and deposited on the windward slopes of the mountains. The rivers and flows then transported the aeolian loess to low terraces and piedmont alluvial plains.