Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter f...Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter for saline-alkali soils with front-axis positive rotation of the front axle and rear-axis counter-rotation of the rear axle was developed,focusing on the kinetic properties of the straw and soil under positive and counter-rotation.In addition,the most important structural parameters and the arrangement of the front-axis stubble cutting knife and the rear-axis return knife were analyzed and determined.Hertz-Mindlin with bonding was used to create a discrete element model of the agglomerate of implement,straw and soil.The forward speed,horizontal distance and vertical distance were used as test factors,and the straw return rate and soil fragmentation rate were used as test indexes to analyze the straw-soil transport law under different operating parameters from a microscopic point of view,and then Design-Expert was used to conduct the test 1.07 km/h,horizontal distance of 569.55 mm,vertical distance of 176.59 mm.To validate the performance of the two-axis,layered rotary tiller,a field trial was conducted and the results show that the straw return ratio was(91.59±0.41)%,soil fragmentation ratio was(91.90±0.29)%and tillage depth stability was(91.52±0.46)%,which met the requirements for peanut seedbed preparation on saline-alkali land.展开更多
Protection and optimization of cultivated land resources are of great significance to national food security.Cultivated land conversion in northern China has increased in recent years due to the industrialization and ...Protection and optimization of cultivated land resources are of great significance to national food security.Cultivated land conversion in northern China has increased in recent years due to the industrialization and urbanization of society.However,the assessment of cultivated land conversion in this area is insufficient,posing a potential risk to cultivated land resources.This study evaluated the evolution and spatiotemporal patterns of cultivated land conversion in Inner Mongolia Autonomous Region,China,and the driving factors to improve rational utilization and to protect cultivated land resources.The spatiotemporal patterns of cultivated land conversion in Inner Mongolia were analyzed using the cultivated land conversion index,kernel density analysis,a standard deviation ellipse model,and a geographic detector.Results showed that from 2000 to 2020,the trends in cultivated land conversion area and rate in Inner Mongolia exhibited fluctuating growth,with the total area of cultivated land conversion reaching 7307.59 km^(2) at a rate of 6.69%.Spatial distribution of cultivated land conversion was primarily concentrated in the Hetao Plain,Nengjiang Plain,Liaohe Plain,and the Hohhot-Baotou-Ordos urban agglomeration.Moreover,the standard deviational ellipse of cultivated land conversion in Inner Mongolia exhibited a directional southwest-northeast-southwest-northeast distribution,with the northeast-southwest direction identified as the main driving force of spatial change in cultivated land conversion.Meanwhile,cultivated land conversion exhibited an increase-decrease-increase change process,indicating that spatial distribution of cultivated land conversion in Inner Mongolia became gradually apparent within the study period.The geographic detector results further revealed that the main driving factors of cultivated land conversion in Inner Mongolia were the share of secondary and tertiary industries and per-unit area yield of grain,with explanatory rates of 57.00%,55.00%,and 51.00%,respectively.Additionally,improved agricultural production efficiency and the coordinated development of population urbanization and industry resulted in cultivated land conversion.Collectively,the findings of this study indicated that,from 2000 to 2020,the cultivated land conversion in Inner Mongolia was significant and fluctuated in time,and had strong spatial heterogeneity.The primary drivers of these events included the effects of agriculture,population,and social economy.展开更多
[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM...[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.展开更多
Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and sc...Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions,roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland.The soil properties and AM fungal colonization were measured,and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target,subsequently,maize was selected as the host to verify its colonization.The results showed that the soil properties improved with the succession of saline-alkali grassland.The plants’communities of the three stages could be colonized by AM fungi,and the colonization rate of Leymus chinensis(the third stage)ranged from 66.67%to 100%,Puccinellia tenuiflora(the second stage)ranged from 50%to 80%,while the Suaeda glauca(the first stage)was only 35%–60%.Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency,relative abundance,and importance value of 100%,18.1%,and 59.1%,respectively.The colonization rate of Glomeraceae sp1 in maize ranged from 80%to 87%and similar mycorrhizal characteristics were detected in the roots of P.tenuiflora,S.glauca,and L.chinensis,indicating that Glomeraceae sp1 colonized the samples in the field.The correlation matrix indicated that colonization rate,colonization intensity,and vesicle abundance were closely related to soil conditions most,and they were related significantly to all the soil properties except cellulase activity.Besides,redundancy analysis(RDA)showed that soil properties drove the changes of AM fungal colonization and sporulation.These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions,and also for the exploration of AM fungi species with great functions.展开更多
The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development...The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.展开更多
In order to explore the effect of Fenlong cultivation in rebuilding and uti- lization of saline-alkali land, the Fenlong tillage machine and Fenlong technology were invented and put into tests in the saline-alkali lan...In order to explore the effect of Fenlong cultivation in rebuilding and uti- lization of saline-alkali land, the Fenlong tillage machine and Fenlong technology were invented and put into tests in the saline-alkali land from 2015-2016 in Xinjiang Autonomous Region and Shaanxi province, respectively. The results showed that in Xinjiang, the total salt content in the heavy saline-alkali soil decreased by 31.31% after one season of cotton planting using Fenlong, while cotton yield increased by 48.80%, and the soil salinity level was fallen from "severe" to "moderate" level. In Shaanxi, the total salt content in decreased by 42.73% after planting summer corn summer corn the mild saline-alkali land using Fenlong cultivation, while the corn yield increased by 34.83%, and the soil salinity degree was changed from "mild de- salination" to "normal farmland". At last, the paper provided the mechanism and reasons for desalination in soil and yield increase by Fenlong cultivation.展开更多
Basing on the limiting factor method and Composite Index method,for the northern China crop-pasture band,the authors established the system of evaluation index,and abstracted the dominant factor,then through applying ...Basing on the limiting factor method and Composite Index method,for the northern China crop-pasture band,the authors established the system of evaluation index,and abstracted the dominant factor,then through applying expert grade and weighing way the suitability of grids are evaluated,the results showed that:without the input of a large number of cash,most of the area was not suitable for farming,and more appropriate area for farming was only 8.45% of total area,mainly located in the southeast and southwest of the study area,followed by the study area in the northeast,areas that was not suitable for farming mainly in the middle of the east,large areas of central and western regions.展开更多
Tanghai County is one of the counties in Tangshan City with the highest saline-alkali degree, with 80% of its land being covered by saline-alkali soils. Through studying landscaping technologies for coastal saline-alk...Tanghai County is one of the counties in Tangshan City with the highest saline-alkali degree, with 80% of its land being covered by saline-alkali soils. Through studying landscaping technologies for coastal saline-alkali land in Tanghai County, 3 dominant modes for landscaping engineering in such land were summarized as shallow underground pipe desalination technology, banding soil replacement technology and hole membrane soil replacement technology, which are different in application scope and also in cost (respectively 260, 210 and 170 yuan). 3 landscaping measures were also proposed, including promotion of suitable plant cultivation technologies, application of saline-alkali tolerant plants and biological improvement of soils. To explore economic and practical planting patterns for saline-alkali land, low-cost landscaping tests were conducted from the perspectives of improving landscaping engineering mode and optimizing landscaping measures, and the results showed that it was practical to apply low-cost landscaping patterns, and comprehensive ecological measures should be adopted to realize the sustained utilization of soil.展开更多
As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one...As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one of main distribution regions of saline-alkali land in China,with great potential in agricultural development. In this study,the extent,transformation,spatial distribution and temporal change of saline-alkali land in the western Songnen Plain during 1954–2005 were investigated by using remote sensing and GIS spatial analysis methods. Saline-alkali land change was detected from a temporal series of topographic maps in 1954,satellite images of Landsat MSS in 1976,Landsat TM/ETM in 1988,2000 and 2005 through artificial visual interpretation. The results indicated a significant expansion in saline-alkali land area and aggravation in salinization. The area of saline-alkali land had increased from 401.48×103 ha in 1954 to 1 097.45×103 ha in 2005. While the ratio of light,moderate and serious salinized land areas changed from 6.72︰2.92︰1.00 to 1.25︰1.06︰1.00 in the study period. Grassland,cropland,swampland and water body were the major land use and land cover types from which saline-alkali land transformed. And the secondary salinization occured mainly in Da′an City,Tongyu County,Changling County,Daqing City,Dorbod Mongolian Autonomous County and Zhaoyuan County. Finally,seven large ecoregions and 14 corresponding sub-ecoregions were delineated out based on spatio-temopral dynamic characteristics of saline-alkali land and geo-relational environmental attributes. According to the results,measures of amelioration and ways of development of saline-alkali land in the western Songnen Plain were put forward.展开更多
The 13 provinces (autonomous regions and municipalities) in northern China are located in latitude 31°-54°N and longitude 73°-136°E including Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Jili...The 13 provinces (autonomous regions and municipalities) in northern China are located in latitude 31°-54°N and longitude 73°-136°E including Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Jilin, Liaoning, Heilongjiang, Shaanxi, Gansu, Ningxia, Qinghai, and Xinjiang, where environments are fragile. In recent years, the eco-environmental problems such as vegetation destruction, desertification and soil erosion etc. become serious because of climate change and unreasonable human activities. In this paper, landscape pattern and its evolution in northern China from 1989 to 2003 was investigated by the combined use of RS and GIS based on the basic theory and method of landscape ecology. Land use/cover maps of the study area in 1989, 1999 and 2003 were produced by using 1 km monthly NOAA Advanced Very High Resolution Radiometer (AVHRR) and SPOTNGT Normalized Difference Vegetation Index (NDVI) dataset from national climate bureau of China which were geo-registered to Lambert azimuthal equal-area map projection and were used in the paper. Landscape evolution in the area over the study period was investigated by two methods: (a) the changes of various landscape metrics were analyzed using the landscape structure analysis program FRAGSTATS; (b) the transition matrix of landscape patch types was calculated with the help of the RS and GIS software. The results showed that from 1989 to 2003, the landscape within the study area had undertaken a complicated evolution in landscape structure and composition. The diversity index and evenness index increased during the period, which means that the landscape pattern tended to be diversified and even. The fragmentation index of grassland, forestland and water areas also increased significantly. This showed that the distribution and structure of forestland, grassland and water areas had been changed greatly during the period, especially grassland which became more and more fragmentized, and its fragmentation index increased from 19.23% to 88.72%. The transitions of the landscape types were mainly shown by the changes among forestland, grassland and farmland, and grassland changing into unable land. Over the study period, grassland and water areas had decreased remarkably, accounting for 15% and 37% from 1989 to 1999 and 24.79% and 49.25% from 1999 to 2003 respectively. The grassland and water resources play an important role in the eco-environment and economic development of the region. So, they must be protected carefully. According to the analysis, we can conclude that the eco-environment in the study area is obviously degenerated due to unreasonable human activities and climate changes and some measures should be taken to combat the environmental degradation.展开更多
Based on the long-term serial NOAA/NDVI dataset during 1983-1999 and SPOT/VGT dataset in 2001, the land use/cover change information in the 13 provinces of northern China was extracted based on the analysis of the cul...Based on the long-term serial NOAA/NDVI dataset during 1983-1999 and SPOT/VGT dataset in 2001, the land use/cover change information in the 13 provinces of northern China was extracted based on the analysis of the cultivated landscape characteristics at first, then the effects of human activities on cultivated land process were explored by GIS and the driving forces of cultivated land change were investigated. The conclusions can be drawn as follows: (1) The constant increase of weak ecological function land as desert and cultivated land and the decrease of the ecological function land of forest and shrub were the main characteristics of the land use/cover change in the 13 provinces from 1983 to 1999, which showed the effects on the ecological adjustment fimction. However, such situations were changed to some extent in the 2000s because of the eco-construction policy of the government. (2) From 1983 to 2001, the Barycenter of cultivated land tended to move from northeast to southwest with the topography and transportation situations being the main influences on the cultivated land distribution. It is found that the cultivated land use intensity decreased noticably with the increase of distance from the main communication arteries. (3) The improvement of the people's living standard is closely related with the cultivated land change. The structural adjustment in the agricultural land caused by economic development and the improvement of the people's living standard ig an important factor affecting the cultivated land change in northern China from 1983 to 2001展开更多
Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited ...Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.展开更多
Remote-sensing data for protected areas in northern Togo, obtained in three different years (2007, 2000, and 1987), were used to assess and map changes in land cover and land use for this drought prone zone. The nor...Remote-sensing data for protected areas in northern Togo, obtained in three different years (2007, 2000, and 1987), were used to assess and map changes in land cover and land use for this drought prone zone. The normalized difference vegetation index (NDVI) was applied to the images to map changes in vegetation. An unsupervised classification, followed by classes recoding, filtering, identifications, area computing and post-classification process were applied to the composite of the three years of NDVI images. Maximum likelihood classification was applied to the 2007 image (ETM+2007) using a supervised classification process. Seven vegetation classes were defined from training data sets. The seven classes included the following biomes: riparian forest, dry forest, flooded vegetation, wooded savanna, fallows, parkland, and water. For these classes, the overall accuracy and the overall kappa statistic for the classi- fied map were 72.5% and 0.67, respectively. Data analyses indicated a great change in land resources; especially between 1987 and 2000 proba- bly due to the impact of democratization process social, economic, and political disorder from 1990. Wide-scale loss of vegetation occurred during this period. However, areas of vegetation clearing and regrowth were more visible between 2000 and 2007. The main source of confusion in the contingency matrix was due to heterogeneity within certain classes. It could also be due to spectral homogeneity among the classes. This research provides a baseline for future ecological landscape research and for the next management program in the area.展开更多
During the Cambrian and Ordovician, widespread magmatic activity occurred in the Ross Orogen of central Antarctica, forming the Granite Harbor Intrusives and Terra Nova Intrusive Complex. In the Terra Nova Intrusive C...During the Cambrian and Ordovician, widespread magmatic activity occurred in the Ross Orogen of central Antarctica, forming the Granite Harbor Intrusives and Terra Nova Intrusive Complex. In the Terra Nova Intrusive Complex, the latest magmatic activity comprised the emplacement of the Abbott Unit(508 Ma) and the Vegetation Unit(~475 Ma), which were formed in different tectonic settings. Owing to their similar lithological features, the tectonic transformation that occurred between the formation of these two units has not been well studied. Through a detailed geological field investigation and geochemical and geochronological analyses, four types of magmatic rock—basalt, syenite, mafic veins, and granite veins—were identified on Inexpressible Island, Northern Victoria Land. Our SHRIMP(Sensitive High Resolution Ion Micro Probe) zircon U–Pb ages of the basalt and the granite veins are 504.7 ± 3.1 and 495.5 ± 4.9 Ma, respectively. Major-and trace-element data indicate a continental-margin island-arc setting for the formation of these two rock types. The zircon U–Pb ages of the syenite and the monzodiorite veins are 485.8 ± 5.7 and 478.5 ± 4.0 Ma, respectively. Major-and trace-element compositions suggest a collisional setting for the former and an intracontinental extensional setting for the latter. These results elucidate the evolution from subduction to collision and intracontinental extension in Northern Victoria Land during the 20 Ma spanning the late Cambrian–Early Ordovician and improve our understanding of the tectonics and evolution of the Ross Orogen in the Transantarctic Mountains.展开更多
Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological sec...Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological security. A system dynamics (SD) model with the aim to modelling scenarios of land use change and assessing ecological impact in northern China in the next 50 years is developed here. The accuracy assessment with the historic data from 1990 to 2001 indicated the SD model is robust. After the different 'what-if' scenarios controlled by GDP, population, market, and technology advancement were built, the different scenarios of land use change in northern China from 2000 to 2050 were simulated with their ecological impact assessed. The result suggested that such factors as GDP, population, market and technology have a strong relationship with land use structural change in northern China. It also indicated that such measures as strict controlling of population increase, importing some food to keep the supply-demand balance in the region, and improving agricultural technology will be the guarantee of regional sustainable development with fast economic growth and the obvious land use structural improvement at the same time.展开更多
Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux ...Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux observations and regional climate diagnosis. The results show that on the interannual scale, the impact of climate factors accounts for 71.6% of the total variation of the saline-alkali land area, and that of human activities accounts for 28.4%. Therefore the impact of climate factors is obviously greater than that of human activities. On the interdecadal scale, the impact of climate factors on the increase of the saline-alkali land area accounts for 43.2%, and that of human activities accounts for 56.8%. The impact of human activities on the variation of saline-alkali land area is very clear on the interdecadal scale, and the negative impact of human activities on the environment should not be negligible. Besides, changes in the area of heavy saline-alkali land have some indication for development of saline-alkali land in Qian'an County.展开更多
In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to A...In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.展开更多
Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present ...Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present situation of saline-alkali land is monitored by remote sensing image processing. Causes for land salinization are analyzed, especially the two key factors, ground water depth and its mineralization degree, are analyzed by using long-term observation data. Previously, zonation of saline-alkali soil was made descriptively and artificially. Based on the present situation of saline-alkali land, ground water depth and ground water mineralization degree, the zonation of saline-alkali land for amelioration in the Yellow River Delta was completed quantitatively. Four different types of saline-alkali land amelioration zones are delineated, namely, easy ameliorated zone, relatively difficult ameliorated zone, difficult ameliorated zone and unfavorable ameliorated zone. Countermeasures for ameliorating saline-alkali soils are put forward according to ecological conditions of different saline-alkali land zones.展开更多
Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to ...Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession.展开更多
Based on Tupu theory, this paper studied the dynamic changes, conversion modes, expansion intensity and landscape attributes of the saline-alkali lands in Changling County, Zhenlai County and Da'an City of the wes...Based on Tupu theory, this paper studied the dynamic changes, conversion modes, expansion intensity and landscape attributes of the saline-alkali lands in Changling County, Zhenlai County and Da'an City of the western Jilin Province in 1980-2000 with the help of GIS. The results show that the saline-alkali land rather sharply increased in Da'an during 1995-2000; the main conversion processes in the three counties were from grassland to saline-alkali land and from saline-alkali land to grassland; and the typical shapes, spatial expansion speed and mode, and landscape attributes of the saline-alkali land were different in the three counties, which were closely related to local topography, predominant wind orientation, water resources distribution, etc. The corresponding spatial expansion mode was marginality in Changling, random in Zhenlai and more kernels in Da'an, respectively. Landscape attributes also responded to the spatial-temporal dynamic changes of the saline-alkali land and the landscape indices of Da'an fluctuated greatly. The frame of this research may provide fundamental reference for landscape analysis and give some suggestions for regional sustainable development.展开更多
基金sponsored by the Shandong Province Key R&D Program(Major Science and Technology Innovation Project)(Grant No.2021CXGC010813)Saline land tillage mechanization equipment research and development,manufacturing and popularization of application(Grant No.NJYTHSD-202314).
文摘Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter for saline-alkali soils with front-axis positive rotation of the front axle and rear-axis counter-rotation of the rear axle was developed,focusing on the kinetic properties of the straw and soil under positive and counter-rotation.In addition,the most important structural parameters and the arrangement of the front-axis stubble cutting knife and the rear-axis return knife were analyzed and determined.Hertz-Mindlin with bonding was used to create a discrete element model of the agglomerate of implement,straw and soil.The forward speed,horizontal distance and vertical distance were used as test factors,and the straw return rate and soil fragmentation rate were used as test indexes to analyze the straw-soil transport law under different operating parameters from a microscopic point of view,and then Design-Expert was used to conduct the test 1.07 km/h,horizontal distance of 569.55 mm,vertical distance of 176.59 mm.To validate the performance of the two-axis,layered rotary tiller,a field trial was conducted and the results show that the straw return ratio was(91.59±0.41)%,soil fragmentation ratio was(91.90±0.29)%and tillage depth stability was(91.52±0.46)%,which met the requirements for peanut seedbed preparation on saline-alkali land.
基金funded by the National Natural Science Foundation of China(2023SHZR0540)the National Science and Technology Support Program of China(NMTDY2021-78).
文摘Protection and optimization of cultivated land resources are of great significance to national food security.Cultivated land conversion in northern China has increased in recent years due to the industrialization and urbanization of society.However,the assessment of cultivated land conversion in this area is insufficient,posing a potential risk to cultivated land resources.This study evaluated the evolution and spatiotemporal patterns of cultivated land conversion in Inner Mongolia Autonomous Region,China,and the driving factors to improve rational utilization and to protect cultivated land resources.The spatiotemporal patterns of cultivated land conversion in Inner Mongolia were analyzed using the cultivated land conversion index,kernel density analysis,a standard deviation ellipse model,and a geographic detector.Results showed that from 2000 to 2020,the trends in cultivated land conversion area and rate in Inner Mongolia exhibited fluctuating growth,with the total area of cultivated land conversion reaching 7307.59 km^(2) at a rate of 6.69%.Spatial distribution of cultivated land conversion was primarily concentrated in the Hetao Plain,Nengjiang Plain,Liaohe Plain,and the Hohhot-Baotou-Ordos urban agglomeration.Moreover,the standard deviational ellipse of cultivated land conversion in Inner Mongolia exhibited a directional southwest-northeast-southwest-northeast distribution,with the northeast-southwest direction identified as the main driving force of spatial change in cultivated land conversion.Meanwhile,cultivated land conversion exhibited an increase-decrease-increase change process,indicating that spatial distribution of cultivated land conversion in Inner Mongolia became gradually apparent within the study period.The geographic detector results further revealed that the main driving factors of cultivated land conversion in Inner Mongolia were the share of secondary and tertiary industries and per-unit area yield of grain,with explanatory rates of 57.00%,55.00%,and 51.00%,respectively.Additionally,improved agricultural production efficiency and the coordinated development of population urbanization and industry resulted in cultivated land conversion.Collectively,the findings of this study indicated that,from 2000 to 2020,the cultivated land conversion in Inner Mongolia was significant and fluctuated in time,and had strong spatial heterogeneity.The primary drivers of these events included the effects of agriculture,population,and social economy.
基金Supported by Key Research and Development Program of Hebei Province(20322911D,21322903D)Innovation Ability Promotion Program of Hebei Province(20562903D)+1 种基金Technical Innovation Guidance Program of Hebei Province(20822904D)Science and Technology Research and Development Program of Qinhuangdao City(202201B028).
文摘[Objectives]This study was conducted to further enrich the research on saline-alkali land improvement,and explore the effects of biological bacterial fertilizers containing Bacillus subtilis and Bacillus velezensis HM-3 in saline-alkali land improvement and crop growth promotion.[Methods]Wheat was planted in saline-alkali land in Huanghua City,Hebei Province,and a mixed application experiment was carried out using biological agents from Hemiao Biotechnology Co.,Ltd.[Results]Compared with the field of control check(CK),water-soluble salts and pH value in the experimental fields decreased,and living bacteria count in the soil increased.Meanwhile,the economic characters of wheat in the experimental fields showed excellent performance,with yields increasing by 39.09%and 27.49%compared with the CK.It could be seen that the application of biological bacterial fertilizers achieved obvious effects of improving saline-alkali soil and increasing wheat yield.[Conclusions]In this study,the effects of biological bacterial fertilizers on saline-alkali land and wheat growth characters were clarified,providing some technical support and theoretical guidance for wheat planting in Huanghua saline-alkali land.
基金funded by National Natural Science Foundation of China with the Grant No.31601986Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘Arbuscular mycorrhizal(AM)fungi can form symbiosis with 90%of the vascular plants and play important roles in ecosystem.To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions,roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland.The soil properties and AM fungal colonization were measured,and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target,subsequently,maize was selected as the host to verify its colonization.The results showed that the soil properties improved with the succession of saline-alkali grassland.The plants’communities of the three stages could be colonized by AM fungi,and the colonization rate of Leymus chinensis(the third stage)ranged from 66.67%to 100%,Puccinellia tenuiflora(the second stage)ranged from 50%to 80%,while the Suaeda glauca(the first stage)was only 35%–60%.Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency,relative abundance,and importance value of 100%,18.1%,and 59.1%,respectively.The colonization rate of Glomeraceae sp1 in maize ranged from 80%to 87%and similar mycorrhizal characteristics were detected in the roots of P.tenuiflora,S.glauca,and L.chinensis,indicating that Glomeraceae sp1 colonized the samples in the field.The correlation matrix indicated that colonization rate,colonization intensity,and vesicle abundance were closely related to soil conditions most,and they were related significantly to all the soil properties except cellulase activity.Besides,redundancy analysis(RDA)showed that soil properties drove the changes of AM fungal colonization and sporulation.These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions,and also for the exploration of AM fungi species with great functions.
基金financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region,China(2022D01B234).
文摘The county(city)located on the northern slope of the Kunlun Mountains is the primary area to solidify and extend the success of Xinjiang Uygur Autonomous Region,China in poverty alleviation.Its Sustainable Development Goals(SDGs)are intertwined with the concerted economic and social development of Xinjiang and the objective of achieving shared prosperity within the region.This study established a sustainable development evaluation framework by selecting 15 SDGs and 20 secondary indicators from the United Nations’SDGs.The aim of this study is to quantitatively assess the progress of SDGs at the county(city)level on the northern slope of the Kunlun Mountains.The results indicate that there are substantial variations in the scores of SDGs among the nine counties and one city located on the northern slope of the Kunlun Mountains.Notable high scores of SDGs are observed in the central and eastern regions,whereas lower scores are prevalent in the western areas.The scores of SDGs,in descending order,are as follows:62.22 for Minfeng County,54.22 for Hotan City,50.21 for Qiemo County,42.54 for Moyu County,41.56 for Ruoqiang County,41.39 for Qira County,39.86 for Lop County,38.25 for Yutian County,38.10 for Pishan County,and 36.87 for Hotan County.The performances of SDGs reveal that Hotan City,Lop County,Minfeng County,and Ruoqiang County have significant sustainable development capacity because they have three or more SDGs ranked as green color.However,Hotan County,Moyu County,Qira County,and Yutian County show the poorest performance,as they lack SDGs with green color.It is important to establish and enhance mechanisms that can ensure sustained income growth among poverty alleviation beneficiaries,sustained improvement in the capacity of rural governance,and the gradual improvement of social security system.These measures will facilitate the effective implementation of SDGs.Finally,this study offers a valuable support for governmental authorities and relevant departments in their decision-making processes.In addition,these results hold significant reference value for assessing SDGs at the county(city)level,particularly in areas characterized by low levels of economic development.
文摘In order to explore the effect of Fenlong cultivation in rebuilding and uti- lization of saline-alkali land, the Fenlong tillage machine and Fenlong technology were invented and put into tests in the saline-alkali land from 2015-2016 in Xinjiang Autonomous Region and Shaanxi province, respectively. The results showed that in Xinjiang, the total salt content in the heavy saline-alkali soil decreased by 31.31% after one season of cotton planting using Fenlong, while cotton yield increased by 48.80%, and the soil salinity level was fallen from "severe" to "moderate" level. In Shaanxi, the total salt content in decreased by 42.73% after planting summer corn summer corn the mild saline-alkali land using Fenlong cultivation, while the corn yield increased by 34.83%, and the soil salinity degree was changed from "mild de- salination" to "normal farmland". At last, the paper provided the mechanism and reasons for desalination in soil and yield increase by Fenlong cultivation.
基金Support by National Natural Science Foundation of China(30590384,30900197)~~
文摘Basing on the limiting factor method and Composite Index method,for the northern China crop-pasture band,the authors established the system of evaluation index,and abstracted the dominant factor,then through applying expert grade and weighing way the suitability of grids are evaluated,the results showed that:without the input of a large number of cash,most of the area was not suitable for farming,and more appropriate area for farming was only 8.45% of total area,mainly located in the southeast and southwest of the study area,followed by the study area in the northeast,areas that was not suitable for farming mainly in the middle of the east,large areas of central and western regions.
文摘Tanghai County is one of the counties in Tangshan City with the highest saline-alkali degree, with 80% of its land being covered by saline-alkali soils. Through studying landscaping technologies for coastal saline-alkali land in Tanghai County, 3 dominant modes for landscaping engineering in such land were summarized as shallow underground pipe desalination technology, banding soil replacement technology and hole membrane soil replacement technology, which are different in application scope and also in cost (respectively 260, 210 and 170 yuan). 3 landscaping measures were also proposed, including promotion of suitable plant cultivation technologies, application of saline-alkali tolerant plants and biological improvement of soils. To explore economic and practical planting patterns for saline-alkali land, low-cost landscaping tests were conducted from the perspectives of improving landscaping engineering mode and optimizing landscaping measures, and the results showed that it was practical to apply low-cost landscaping patterns, and comprehensive ecological measures should be adopted to realize the sustained utilization of soil.
基金Under the auspices of National Natural Science Foundation of China (No. 40771162)Key Item of Knowledge Innova-tion Programs of Chinese Academy of Sciences (No.KZCX2-SW-320-1)
文摘As the important reserve land resources for food production,saline-alkali land should play a significant role to ensure the national food security in the context of global food crisis. The western Songnen Plain is one of main distribution regions of saline-alkali land in China,with great potential in agricultural development. In this study,the extent,transformation,spatial distribution and temporal change of saline-alkali land in the western Songnen Plain during 1954–2005 were investigated by using remote sensing and GIS spatial analysis methods. Saline-alkali land change was detected from a temporal series of topographic maps in 1954,satellite images of Landsat MSS in 1976,Landsat TM/ETM in 1988,2000 and 2005 through artificial visual interpretation. The results indicated a significant expansion in saline-alkali land area and aggravation in salinization. The area of saline-alkali land had increased from 401.48×103 ha in 1954 to 1 097.45×103 ha in 2005. While the ratio of light,moderate and serious salinized land areas changed from 6.72︰2.92︰1.00 to 1.25︰1.06︰1.00 in the study period. Grassland,cropland,swampland and water body were the major land use and land cover types from which saline-alkali land transformed. And the secondary salinization occured mainly in Da′an City,Tongyu County,Changling County,Daqing City,Dorbod Mongolian Autonomous County and Zhaoyuan County. Finally,seven large ecoregions and 14 corresponding sub-ecoregions were delineated out based on spatio-temopral dynamic characteristics of saline-alkali land and geo-relational environmental attributes. According to the results,measures of amelioration and ways of development of saline-alkali land in the western Songnen Plain were put forward.
基金Science & Technology Research Project of Chongqing Municipal Education Commission, No.KJ070811Doctor Startup Fund of Chongqing Normal University, No. 06XLB004National Basic Research Program of China, No.G2000018604
文摘The 13 provinces (autonomous regions and municipalities) in northern China are located in latitude 31°-54°N and longitude 73°-136°E including Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Jilin, Liaoning, Heilongjiang, Shaanxi, Gansu, Ningxia, Qinghai, and Xinjiang, where environments are fragile. In recent years, the eco-environmental problems such as vegetation destruction, desertification and soil erosion etc. become serious because of climate change and unreasonable human activities. In this paper, landscape pattern and its evolution in northern China from 1989 to 2003 was investigated by the combined use of RS and GIS based on the basic theory and method of landscape ecology. Land use/cover maps of the study area in 1989, 1999 and 2003 were produced by using 1 km monthly NOAA Advanced Very High Resolution Radiometer (AVHRR) and SPOTNGT Normalized Difference Vegetation Index (NDVI) dataset from national climate bureau of China which were geo-registered to Lambert azimuthal equal-area map projection and were used in the paper. Landscape evolution in the area over the study period was investigated by two methods: (a) the changes of various landscape metrics were analyzed using the landscape structure analysis program FRAGSTATS; (b) the transition matrix of landscape patch types was calculated with the help of the RS and GIS software. The results showed that from 1989 to 2003, the landscape within the study area had undertaken a complicated evolution in landscape structure and composition. The diversity index and evenness index increased during the period, which means that the landscape pattern tended to be diversified and even. The fragmentation index of grassland, forestland and water areas also increased significantly. This showed that the distribution and structure of forestland, grassland and water areas had been changed greatly during the period, especially grassland which became more and more fragmentized, and its fragmentation index increased from 19.23% to 88.72%. The transitions of the landscape types were mainly shown by the changes among forestland, grassland and farmland, and grassland changing into unable land. Over the study period, grassland and water areas had decreased remarkably, accounting for 15% and 37% from 1989 to 1999 and 24.79% and 49.25% from 1999 to 2003 respectively. The grassland and water resources play an important role in the eco-environment and economic development of the region. So, they must be protected carefully. According to the analysis, we can conclude that the eco-environment in the study area is obviously degenerated due to unreasonable human activities and climate changes and some measures should be taken to combat the environmental degradation.
文摘Based on the long-term serial NOAA/NDVI dataset during 1983-1999 and SPOT/VGT dataset in 2001, the land use/cover change information in the 13 provinces of northern China was extracted based on the analysis of the cultivated landscape characteristics at first, then the effects of human activities on cultivated land process were explored by GIS and the driving forces of cultivated land change were investigated. The conclusions can be drawn as follows: (1) The constant increase of weak ecological function land as desert and cultivated land and the decrease of the ecological function land of forest and shrub were the main characteristics of the land use/cover change in the 13 provinces from 1983 to 1999, which showed the effects on the ecological adjustment fimction. However, such situations were changed to some extent in the 2000s because of the eco-construction policy of the government. (2) From 1983 to 2001, the Barycenter of cultivated land tended to move from northeast to southwest with the topography and transportation situations being the main influences on the cultivated land distribution. It is found that the cultivated land use intensity decreased noticably with the increase of distance from the main communication arteries. (3) The improvement of the people's living standard is closely related with the cultivated land change. The structural adjustment in the agricultural land caused by economic development and the improvement of the people's living standard ig an important factor affecting the cultivated land change in northern China from 1983 to 2001
基金National Basic Research Program of China, No.2009CB825105National Natural Science Foundation of China, No.40671015
文摘Sustainable land use patterns are ecological and economic prerequisites of regional sustainable development. This is especially true for arid lands, where the environment is wholly fragile thanks to extremely limited precipitation, and where human activities have greatly transformed natural desert system by clearing natural vegetation, expanding oases and even building dams on inland rivers. However, the current studies on land use patterns are still characterized by field investigations and case studies, with almost no solid scientific basis. This paper holds that land types and their combination patterns are the principal basis for designing sustainable land use patterns, and that GIS and RS-based large-scale land type mapping and the study of their spatial combination structures should be coordinated with the demand of social development. The existing environmental problems induced by irrational land use mostly result from their deviation from the natural properties of land types. Taking the northern slope of the Tianshan Mountains (NSTM) as an example and considering land type patterns as the basis of land use patterns, this paper improves the vertical oa- sis-and-mid-mountain two-belts development model and the sustainable mountain land use model for arid lands put forward in recent years; and in terms of oases patterns, it outlines oasis development models, including intensive land use pattern in alluvial-diluvial fans, moderate agricultural development pattern in alluvial plains, and ecological land use pattern in river-end oases.
基金supported by the Chinese Ministry of Sciences and Technology--the host of China-Africa Science and Technology Partnership Program(CASTEP)the National Special Research Program for Forestry Welfare of China(201104009)
文摘Remote-sensing data for protected areas in northern Togo, obtained in three different years (2007, 2000, and 1987), were used to assess and map changes in land cover and land use for this drought prone zone. The normalized difference vegetation index (NDVI) was applied to the images to map changes in vegetation. An unsupervised classification, followed by classes recoding, filtering, identifications, area computing and post-classification process were applied to the composite of the three years of NDVI images. Maximum likelihood classification was applied to the 2007 image (ETM+2007) using a supervised classification process. Seven vegetation classes were defined from training data sets. The seven classes included the following biomes: riparian forest, dry forest, flooded vegetation, wooded savanna, fallows, parkland, and water. For these classes, the overall accuracy and the overall kappa statistic for the classi- fied map were 72.5% and 0.67, respectively. Data analyses indicated a great change in land resources; especially between 1987 and 2000 proba- bly due to the impact of democratization process social, economic, and political disorder from 1990. Wide-scale loss of vegetation occurred during this period. However, areas of vegetation clearing and regrowth were more visible between 2000 and 2007. The main source of confusion in the contingency matrix was due to heterogeneity within certain classes. It could also be due to spectral homogeneity among the classes. This research provides a baseline for future ecological landscape research and for the next management program in the area.
基金supported by the National Science Foundation of China (Grant no. 41530209)the Central Public Interest Scientific Institution Basal Research Fund (Grant no. JYYWF201819)the Chinese Polar Environment Comprehensive Investigation & Assessment Program (Grant no. CHINARE2016-02-05)
文摘During the Cambrian and Ordovician, widespread magmatic activity occurred in the Ross Orogen of central Antarctica, forming the Granite Harbor Intrusives and Terra Nova Intrusive Complex. In the Terra Nova Intrusive Complex, the latest magmatic activity comprised the emplacement of the Abbott Unit(508 Ma) and the Vegetation Unit(~475 Ma), which were formed in different tectonic settings. Owing to their similar lithological features, the tectonic transformation that occurred between the formation of these two units has not been well studied. Through a detailed geological field investigation and geochemical and geochronological analyses, four types of magmatic rock—basalt, syenite, mafic veins, and granite veins—were identified on Inexpressible Island, Northern Victoria Land. Our SHRIMP(Sensitive High Resolution Ion Micro Probe) zircon U–Pb ages of the basalt and the granite veins are 504.7 ± 3.1 and 495.5 ± 4.9 Ma, respectively. Major-and trace-element data indicate a continental-margin island-arc setting for the formation of these two rock types. The zircon U–Pb ages of the syenite and the monzodiorite veins are 485.8 ± 5.7 and 478.5 ± 4.0 Ma, respectively. Major-and trace-element compositions suggest a collisional setting for the former and an intracontinental extensional setting for the latter. These results elucidate the evolution from subduction to collision and intracontinental extension in Northern Victoria Land during the 20 Ma spanning the late Cambrian–Early Ordovician and improve our understanding of the tectonics and evolution of the Ross Orogen in the Transantarctic Mountains.
基金Young TeacherFoundation ofBeijing N orm alU niversity,N o.10770001
文摘Modelling scenarios of land use change and their impacts in typical regions are helpful to investigate the mechanism between land use and ecological systems and process the land use allocation under the ecological security. A system dynamics (SD) model with the aim to modelling scenarios of land use change and assessing ecological impact in northern China in the next 50 years is developed here. The accuracy assessment with the historic data from 1990 to 2001 indicated the SD model is robust. After the different 'what-if' scenarios controlled by GDP, population, market, and technology advancement were built, the different scenarios of land use change in northern China from 2000 to 2050 were simulated with their ecological impact assessed. The result suggested that such factors as GDP, population, market and technology have a strong relationship with land use structural change in northern China. It also indicated that such measures as strict controlling of population increase, importing some food to keep the supply-demand balance in the region, and improving agricultural technology will be the guarantee of regional sustainable development with fast economic growth and the obvious land use structural improvement at the same time.
基金Under the auspices of National Key Technology R&D Program of China (No. 2007BAC29B01)Major State Basic Research Development Program of China (973 Program) (No. 2006CB400500)+1 种基金National Natural Science Foundation of China (No.40575047, 40705036, 40975055)Key Program of Jilin Provincial Science & Technology Department (No. 20020417)
文摘Interdecadal and interannuat variations of saline-alkali land area in Qian'an County, Jilin Province, China were comprehensively analyzed in this paper by means of satellite remote sensing interpretation, field flux observations and regional climate diagnosis. The results show that on the interannual scale, the impact of climate factors accounts for 71.6% of the total variation of the saline-alkali land area, and that of human activities accounts for 28.4%. Therefore the impact of climate factors is obviously greater than that of human activities. On the interdecadal scale, the impact of climate factors on the increase of the saline-alkali land area accounts for 43.2%, and that of human activities accounts for 56.8%. The impact of human activities on the variation of saline-alkali land area is very clear on the interdecadal scale, and the negative impact of human activities on the environment should not be negligible. Besides, changes in the area of heavy saline-alkali land have some indication for development of saline-alkali land in Qian'an County.
基金the National Natural Science Foundation of China (Nos. 41075053 and 41275016)
文摘In order to further understand the land surface processes over the northern Tibetan Plateau, this study produced an off-line simulated examination at the Bujiao site on the northern Tibetan Plateau from June 2002 to April 2004, using the Noah Land Surface Model (Noah LSM) and observed data from the CAMP/Tibet experiment. The observed data were neces- sarily corrected and the number of soil layers in the Noah LSM was changed from 4 to 10 to enable this off-line simulation and analysis. The main conclusions are as follows: the Noah LSM performed well on the northern Tibetan Plateau. The simulated net radiation, upward longwave radiation, and upward shortwave radiation demonstrated the same remarkable annual and seasonal variation as the observed data, especially the upward longwave radiation. The simulated soil temperatures were acceptably close to the observed temperatures, especially in the shallow soil layers. The simulated freezing and melting processes were shown to start from the surface soil layer and spread down to the deep soil layers, but they took longer than the observed processes. However, Noah LSM did not adequately simulate the soil moisture. Therefore, additional high-quality, long-term observations of land surface-atmosphere processes over the Tibetan Plateau will be a key factor in proper adiustments of the model parameters in the future.
基金Study of Sustainable Development Information Tupu in the Yellow River Delta Knowledge Innovation Project of CAS, No.CXIOG-D00-0
文摘Soil salinization is one of the major land degradation types and has greatly influenced sustainable agricultural development. Zonation of saline-alkali land is the precondition for effective amelioration. The present situation of saline-alkali land is monitored by remote sensing image processing. Causes for land salinization are analyzed, especially the two key factors, ground water depth and its mineralization degree, are analyzed by using long-term observation data. Previously, zonation of saline-alkali soil was made descriptively and artificially. Based on the present situation of saline-alkali land, ground water depth and ground water mineralization degree, the zonation of saline-alkali land for amelioration in the Yellow River Delta was completed quantitatively. Four different types of saline-alkali land amelioration zones are delineated, namely, easy ameliorated zone, relatively difficult ameliorated zone, difficult ameliorated zone and unfavorable ameliorated zone. Countermeasures for ameliorating saline-alkali soils are put forward according to ecological conditions of different saline-alkali land zones.
基金This work was supported by the National Natural Science Foundation of China(31601986)Heilongjiang Postdoctoral Scientific Research Developmental Fund(LBH-Q16005).
文摘Arbuscular mycorrhizal(AM)fungi are widely distributed in various habitats,and the community composition varies in response to the changing environmental conditions.To explore the response of community composition to the succession of saline-alkali land,soil samples were collected from three succession stages of Songnen saline-alkali grassland.Subsequently,the soil characteristics were determined and the AM fungi in soil samples were analyzed by high-throughput sequencing.Then,the response relationship between community composition and soil characteristics was studied by Canonical correlation and Pearson analyses.The soil properties improved with the succession of saline-alkali grassland.There was no significant difference in alpha diversity between the first and second succession stage(Suaeda glauca and Puccinellia tenuiflora,respectively),and the microbial community had a dense association network at the third stage(Leymus chinensis);in addition,each succession stage had significantly enriched amplicon sequence variants(ASVs)and functional pathways.All the soil properties except cellulase activity had significant effects on community composition.Furthermore,the pH,organic carbon,organic matter,and sucrase activity significantly correlated with alpha diversity indices.These results provide a theoretical basis for realizing the significant changes in AM fungal community and soil properties during the saline-alkali grassland vegetation succession.
基金Under the auspices of National Natural Science Foundation of China (No. 40401003)Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX3-SW-356)fund for Scholarship of Dean of Chinese Academy of Sciences
文摘Based on Tupu theory, this paper studied the dynamic changes, conversion modes, expansion intensity and landscape attributes of the saline-alkali lands in Changling County, Zhenlai County and Da'an City of the western Jilin Province in 1980-2000 with the help of GIS. The results show that the saline-alkali land rather sharply increased in Da'an during 1995-2000; the main conversion processes in the three counties were from grassland to saline-alkali land and from saline-alkali land to grassland; and the typical shapes, spatial expansion speed and mode, and landscape attributes of the saline-alkali land were different in the three counties, which were closely related to local topography, predominant wind orientation, water resources distribution, etc. The corresponding spatial expansion mode was marginality in Changling, random in Zhenlai and more kernels in Da'an, respectively. Landscape attributes also responded to the spatial-temporal dynamic changes of the saline-alkali land and the landscape indices of Da'an fluctuated greatly. The frame of this research may provide fundamental reference for landscape analysis and give some suggestions for regional sustainable development.