Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cul...Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cultivars,quantitative trait loci(QTLs)for these traits were detected based on the phenotypic evaluation data in nine environments across four locations and 4 years and a previously reported genetic linkage map of an recombinant inbred line(RIL)population of upland cotton.Results:In total,53 QTLs of PH and FBN,were identified on 21 chromosomes of the cotton genome except chromosomes c02,c09-c11,and c22.For PH,27 QTLs explaining 3.81%–8.54%proportions of phenotypic variance were identified on 18 chromosomes except c02,c08-c12,c15,and c22.For FBN,26 QTLs explaining 3.23%–11.00%proportions of phenotypic variance were identified on 16 chromosomes except c02-c03,c06,c09-c11,c17,c22-c23,and c25.Eight QTLs were simultaneously identified in at least two environments.Three QTL clusters containing seven QTLs were identified on three chromosomes(c01,c18 and c21).Eleven QTLs were the same as previously reported ones,while the rest were newly identified.Conclusions:The QTLs and QTL clusters identified in the current study will be helpful to further understand the genetic mechanism of PH and FBN development of cotton and will enhance the development of excellent cultivars for mechanical managements in cotton production.展开更多
Seed is the offspring of angiosperms.Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments.Ovule is a fundamentally important organ and is the precursor of the see...Seed is the offspring of angiosperms.Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments.Ovule is a fundamentally important organ and is the precursor of the seed.In Arabidopsis and other plants characterized by multi-ovulate ovaries,ovule initiation determines the maximal ovule number,thus greatly affecting seed number per fruit and seed yield.Investigating the regulatory mechanism of ovule initiation has both scientific and economic significance.However,the genetic and molecular basis underlying ovule initiation remains unclear due to technological limitations.Very recently,rules governing the multiple ovules initiation from one placenta have been identified,the individual functions and crosstalk of phytohormones in regulating ovule initiation have been further characterized,and new regulators of ovule boundary are reported,therefore expanding the understanding of this field.In this review,we present an overview of current knowledge in ovule initiation and summarize the significance of ovule initiation in regulating the number of plant offspring,as well as raise insights for the future study in this field that provide potential routes for the improvement of crop yield.展开更多
基金funded by the National Key R&D Program of China(2017YFD01016002016YFD0100505)+1 种基金the Fundamental Research Funds for Central Research Institutes(Y2017JC48)the Natural Science Foundation of China(31371668,31471538)。
文摘Background:Plant height(PH)and fruit branch number(FBN)are important traits for improving yield and mechanical harvesting of cotton.In order to identify genes of PH and FBN in cotton germplasms to develop superior cultivars,quantitative trait loci(QTLs)for these traits were detected based on the phenotypic evaluation data in nine environments across four locations and 4 years and a previously reported genetic linkage map of an recombinant inbred line(RIL)population of upland cotton.Results:In total,53 QTLs of PH and FBN,were identified on 21 chromosomes of the cotton genome except chromosomes c02,c09-c11,and c22.For PH,27 QTLs explaining 3.81%–8.54%proportions of phenotypic variance were identified on 18 chromosomes except c02,c08-c12,c15,and c22.For FBN,26 QTLs explaining 3.23%–11.00%proportions of phenotypic variance were identified on 16 chromosomes except c02-c03,c06,c09-c11,c17,c22-c23,and c25.Eight QTLs were simultaneously identified in at least two environments.Three QTL clusters containing seven QTLs were identified on three chromosomes(c01,c18 and c21).Eleven QTLs were the same as previously reported ones,while the rest were newly identified.Conclusions:The QTLs and QTL clusters identified in the current study will be helpful to further understand the genetic mechanism of PH and FBN development of cotton and will enhance the development of excellent cultivars for mechanical managements in cotton production.
基金the findings from the National Natural Science Foundation of China(32070342 and 31771591)the national basic research program of China(2014CB943404)+3 种基金Shanghai Jiao Tong University Ji RLMDS Joint Research Fund(MDS-JF-2020-8)the Agri-X Interdisciplinary Fund of Shanghai Jiao Tong University(Agri-X20200204 and Agri-X2017006)the Bio-X Interdisciplinary Fund of Shanghai Jiao Tong University(20CX-04)the Scientific and Technological Innovation Funds of Shanghai Jiao Tong University(19×160020009)。
文摘Seed is the offspring of angiosperms.Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments.Ovule is a fundamentally important organ and is the precursor of the seed.In Arabidopsis and other plants characterized by multi-ovulate ovaries,ovule initiation determines the maximal ovule number,thus greatly affecting seed number per fruit and seed yield.Investigating the regulatory mechanism of ovule initiation has both scientific and economic significance.However,the genetic and molecular basis underlying ovule initiation remains unclear due to technological limitations.Very recently,rules governing the multiple ovules initiation from one placenta have been identified,the individual functions and crosstalk of phytohormones in regulating ovule initiation have been further characterized,and new regulators of ovule boundary are reported,therefore expanding the understanding of this field.In this review,we present an overview of current knowledge in ovule initiation and summarize the significance of ovule initiation in regulating the number of plant offspring,as well as raise insights for the future study in this field that provide potential routes for the improvement of crop yield.