This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine fun...This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine function is represented in an orthonormal frame while assimilating a point to a sublayer. This made it possible to draw up a graph integrating each of the diagrams of the known energy levels. Our results are conclusive. We can then confirm that the research hypothesis is verified.展开更多
Let φ be a homomorphism from a group H to a group Aut(N). Denote by Hφ× N the semidirect product of N by H with homomorphism φ. This paper proves that: Let G be a finite nonsolvable group. If G has exactly ...Let φ be a homomorphism from a group H to a group Aut(N). Denote by Hφ× N the semidirect product of N by H with homomorphism φ. This paper proves that: Let G be a finite nonsolvable group. If G has exactly 40 maximal order elements, then G is isomorphic to one of the following groups: (1) Z4φ×A5, kerφ = Z2; (2) D8φ ×A5, kerφ = Z2 ×Z2; (3) G/N = S5, N = Z(G) = Z2; (4) G/N = S5, N = Z2 ×Z2, N∩Z(G) = Z2.展开更多
文摘This article focuses on a new insight into the energy classification of sublayers. In this article, the study brings out very interesting and enriching information, knowledge and knowledge in atomistics. An affine function is represented in an orthonormal frame while assimilating a point to a sublayer. This made it possible to draw up a graph integrating each of the diagrams of the known energy levels. Our results are conclusive. We can then confirm that the research hypothesis is verified.
基金the Natural of Chongqing Three Gorge University(No.2007-sxxyyb-01)
文摘Let φ be a homomorphism from a group H to a group Aut(N). Denote by Hφ× N the semidirect product of N by H with homomorphism φ. This paper proves that: Let G be a finite nonsolvable group. If G has exactly 40 maximal order elements, then G is isomorphic to one of the following groups: (1) Z4φ×A5, kerφ = Z2; (2) D8φ ×A5, kerφ = Z2 ×Z2; (3) G/N = S5, N = Z(G) = Z2; (4) G/N = S5, N = Z2 ×Z2, N∩Z(G) = Z2.