Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production w...Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.展开更多
In today’s society, with the continuous growth of energy demand, Bohai Oilfield, as an important offshore oil resource base in China, is facing increasingly severe challenges while contributing to national energy sec...In today’s society, with the continuous growth of energy demand, Bohai Oilfield, as an important offshore oil resource base in China, is facing increasingly severe challenges while contributing to national energy security. In order to improve the quality of water injection in the oilfield and gradually achieve efficient and stable production, Bohai Oilfield has launched a water injection well pressure optimization project, focusing on improving the efficiency and quality of water injection in the water injection wells, in order to achieve the optimal water injection plan. In practical work, P Oilfield continues to promote the development of water injection well pressure optimization projects, emphasizing practical exploration and continuous optimization of work plans. However, during the project implementation process, there were some problems, one of which was that the statistics of cumulative injection volume were not scientific enough, resulting in a more comprehensive and accurate presentation of the actual results of pressure optimization work. In the context of continuous improvement work, after careful analysis and research, P Oilfield has decided to optimize the cumulative injection rate algorithm to guide the oilfield’s water injection work in a more refined way, ensuring sufficient and good water injection, and enhancing the oilfield’s production efficiency and comprehensive competitiveness.展开更多
Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscilla...Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.展开更多
The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this ...The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this type of well pattern, determining the horizontal well is affected by which injection wells, especially when the injecting water breaks through, accurately determining the direction of water inflow will provide an important basis for targeted water well measures. Based on the production performance data of horizontal wells, the semi logarithmic relationship curves of water-oil ratio, derivative water-oil ratio, and cumulative production were used for the first time to determine the breakthrough problem of water injection in the surrounding water injection wells of horizontal wells based on their response characteristics. The adaptability of this method under different influencing factors was analyzed. Introducing the parameter of cumulative production not only preserves the variation trend of the derivative of water-oil ratio with time, but also facilitates the processing of actual production data.展开更多
For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow ...For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.展开更多
During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical me...During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.展开更多
This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Ru...This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics展开更多
Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well ...Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well pattern, the relationship between relative well and fracture positions, and injection rate in dissolution vug-cave reservoirs with/without fractures were carried out to analyze variation regularities of development indexes, find out development characteristics of water flooding with different well patterns and sort out the optimal water flooding development mode. For dissolution vug-cave reservoirs without fractures, five-spot well pattern waterflooding has very small sweeping area, serious water channeling and low oil recovery. When the well pattern was adjusted from five-spot to nine-spot well pattern, oil recovery could be largely improved, but the corner well far from the injector is little affected. In dissolution vug-cave reservoirs with fractures, when the injector and producer are not connected by fractures, the fractures could effectively connect the poorly linked vugs to improve the development effect of water flooding. Whether there are fractures or not in dissolution vug-cave reservoirs, the development effect of nine-spot well-pattern is much better than that of five-spot well pattern and five-spot to nine-spot well pattern, this is more evident when there are fractures, and the edge well has better development indexes than corner well. At the high-water cut stage of water flooding with nine-spot well pattern, the oil recovery can be further improved with staggered line-drive pattern by converting the corner well into injection well. It is helpful to increase the oil production of corner well of nine-spot well pattern by increasing the injection rate, and improve ultimate oil recovery, but the water-free production period would be greatly shortened and water-free recovery would decrease.展开更多
文摘Produced water (PW) is the largest waste stream in the oil and gas industry. Water remains trapped for millions of years in the reservoir with oil and gas. When a hydrocarbon reservoir is infiltrated by a production well, the produced fluids commonly contain water. The understanding of this water’s constituents and volumes is vital for the sustainable continuity of production operations, as PW has a number of negative impacts on the infrastructure integrity of the operation. On the other hand, PW can be an alternative source of irrigation water as well as of industrial salt. Interestingly, both the quantity as well as the quality of PW do not remain constant but can vary, both progressively and erratically, even over short periods of time. This paper discusses such a situation of variable PW in an oil and gas operation in the State of Kuwait.
文摘In today’s society, with the continuous growth of energy demand, Bohai Oilfield, as an important offshore oil resource base in China, is facing increasingly severe challenges while contributing to national energy security. In order to improve the quality of water injection in the oilfield and gradually achieve efficient and stable production, Bohai Oilfield has launched a water injection well pressure optimization project, focusing on improving the efficiency and quality of water injection in the water injection wells, in order to achieve the optimal water injection plan. In practical work, P Oilfield continues to promote the development of water injection well pressure optimization projects, emphasizing practical exploration and continuous optimization of work plans. However, during the project implementation process, there were some problems, one of which was that the statistics of cumulative injection volume were not scientific enough, resulting in a more comprehensive and accurate presentation of the actual results of pressure optimization work. In the context of continuous improvement work, after careful analysis and research, P Oilfield has decided to optimize the cumulative injection rate algorithm to guide the oilfield’s water injection work in a more refined way, ensuring sufficient and good water injection, and enhancing the oilfield’s production efficiency and comprehensive competitiveness.
文摘Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.
文摘The combined well pattern has been widely used in reservoir development, with a common pattern being a horizontal well in the center for oil production and multiple vertical wells around for water injection. For this type of well pattern, determining the horizontal well is affected by which injection wells, especially when the injecting water breaks through, accurately determining the direction of water inflow will provide an important basis for targeted water well measures. Based on the production performance data of horizontal wells, the semi logarithmic relationship curves of water-oil ratio, derivative water-oil ratio, and cumulative production were used for the first time to determine the breakthrough problem of water injection in the surrounding water injection wells of horizontal wells based on their response characteristics. The adaptability of this method under different influencing factors was analyzed. Introducing the parameter of cumulative production not only preserves the variation trend of the derivative of water-oil ratio with time, but also facilitates the processing of actual production data.
文摘For thin oil rim reservoir with gas cap and edge water, it is helpful to improve the development effect to find out the distribution law of remaining oil in this kind of reservoirs. For this reason, taking the narrow oil rim reservoir with gas cap and edge water of Oilfield A in Bohai Sea as a case, the main controlling factors, including reservoir structure, fault, gas cap energy, edge water energy and well pattern, affecting the distribution of residual oil in this kind of reservoir were analyzed by using the data of core, logging, paleogeomorphology and production. Then, the distribution law of remaining oil was summarized. Generally, the remaining oil distribution is mainly potato-shaped or strip-shaped in plane. Vertically, it depends on the energy of gas cap and edge water. For the reservoir with big gas gap and weak edge water, the remaining oil mainly lies in the bottom of oil column. And for the reservoir with small gas gap and strong edge water, the remaining oil mainly locates at the top of oil column. Aiming at different distribution modes of remaining oil, the corresponding potential tapping strategies of horizontal wells are put forward: in the late stage of development, for the reservoir with big gas gap and weak edge water, the remaining oil concentrates at the bottom of the oil column, and the position of horizontal well should be placed at the lower 1/3 to the lower 1/5 of the oil column;for the reservoir with small gas cap and strong edge water, the remaining oil locates at the top of the oil column, and the position of horizontal well should be put at the upper 1/5 to the upper 1/3 of the oil column height, vertically. Based on the study on remaining oil of Oilfield A, a potential tapping strategy of well pattern thickening and vertical position optimization of horizontal well was proposed. This strategy guided the efficient implementation of the comprehensive adjustment plan of the oilfield. Moreover, 18 infill development wells were implemented in Oilfield A, and the average production of the infill wells is 2.1 times that of the surrounding old wells. It is estimated that the ultimate recovery factor of the oilfield will reach 33.9%, which is 2.3% higher than that before infilling wells. This study can be used for reference in the development of similar reservoirs.
基金Supported by the National Key Basic Research and Development Program(973 Program),China(2015CB251205)
文摘During deep water oil well testing, the low temperature environment is easy to cause wax precipitation, which affects the normal operation of the test and increases operating costs and risks. Therefore, a numerical method for predicting the wax precipitation region in oil strings was proposed based on the temperature and pressure fields of deep water test string and the wax precipitation calculation model. And the factors affecting the wax precipitation region were analyzed. The results show that: the wax precipitation region decreases with the increase of production rate, and increases with the decrease of geothermal gradient, increase of water depth and drop of water-cut of produced fluid, and increases slightly with the increase of formation pressure. Due to the effect of temperature and pressure fields, wax precipitation region is large in test strings at the beginning of well production. Wax precipitation region gradually increases with the increase of shut-in time. These conclusions can guide wax prevention during the testing of deep water oil well, to ensure the success of the test.
文摘This work is devoted to the analysis of the formation conditions and geologic model of Paleozoic basement rocks of a number of oil-and-gas fields, located in Tomsk region(South of West-Siberian Oil-and-Gas Province,Russia).The research is based on integrated data interpretation of seismic exploration, well logging and deep drilling.The study is at the interfaces between exploration geophysics
基金Supported by the China National Science and Technology Major Project(2016ZX05014-003-004)
文摘Based on the similarity criterion, volcanic rock samples were taken from outcrops to make experimental models. Water flooding experiments of five-spot well pattern, nine-spot well pattern, five-spot to nine-spot well pattern, the relationship between relative well and fracture positions, and injection rate in dissolution vug-cave reservoirs with/without fractures were carried out to analyze variation regularities of development indexes, find out development characteristics of water flooding with different well patterns and sort out the optimal water flooding development mode. For dissolution vug-cave reservoirs without fractures, five-spot well pattern waterflooding has very small sweeping area, serious water channeling and low oil recovery. When the well pattern was adjusted from five-spot to nine-spot well pattern, oil recovery could be largely improved, but the corner well far from the injector is little affected. In dissolution vug-cave reservoirs with fractures, when the injector and producer are not connected by fractures, the fractures could effectively connect the poorly linked vugs to improve the development effect of water flooding. Whether there are fractures or not in dissolution vug-cave reservoirs, the development effect of nine-spot well-pattern is much better than that of five-spot well pattern and five-spot to nine-spot well pattern, this is more evident when there are fractures, and the edge well has better development indexes than corner well. At the high-water cut stage of water flooding with nine-spot well pattern, the oil recovery can be further improved with staggered line-drive pattern by converting the corner well into injection well. It is helpful to increase the oil production of corner well of nine-spot well pattern by increasing the injection rate, and improve ultimate oil recovery, but the water-free production period would be greatly shortened and water-free recovery would decrease.