To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overc...To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.展开更多
Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic sim...Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.展开更多
Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission ...Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission coefficient occur and can be explained by the local electron density of states in the quantum dots. The effects of the optical pumping frequency and intensity on the transport properties of the system are also discussed. The electron dynamical localization phenomenon occurs when the optical pumping frequency is equal to the discrete hole energy level. This result can be used to realize optical control switches.展开更多
Relative roles of Ekman transport and Ekman pumping in driving summer upwelling in the South China Sea (SCS) are examined using QuikSCAT scatterometer wind data. The major upwelling regions in the SCS are the coasta...Relative roles of Ekman transport and Ekman pumping in driving summer upwelling in the South China Sea (SCS) are examined using QuikSCAT scatterometer wind data. The major upwelling regions in the SCS are the coastal regions east and south- east of Vietnam (UESEV), east and southeast of Hainan Island (UESEH), and southeast of Guangdong province (USEG). It is shown that the Ekman transport due to alongshore winds and Ekman pumping due to offshore wind stress curl play different roles in the three upwelling systems. In UESEV, Ekman pumping and Ekman transport are equally important in generating upwelling. The Ek- man transport increases linearly from 0.49 Sv in May to 1.23 Sv in August, while the Ekman pumping increases from 0.36 to 1.22 Sv during the same period. In UESEH, the mean estimates of Ekman transport and Ekman pumping are 0.14 and 0.07 Sv, respectively, indicating that 33% of the total wind-driven upwelling is due to Ekman pumping. In USEC~ the mean Ekman transport is 0.041 Sv with the peak occurring in July, while Ekman pumping is much smaller (0.003 on average), indicating that the upwelling in this area is primarily driven by Ekman transport. In the summers of 2003 and 2007 following E1 Nifio-Southern Oscillation (ENSO) events, both Ekman transport and Ekman pumping decrease in UESEV due to the abnormally weak southwest monsoon. During the same events, however, Ekman transport is slightly enhanced and Ekman pumping is weakened in UESEH and USEG.展开更多
The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range...The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data(ERA-40 data) and the Simple Ocean Data Assimilation(SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.展开更多
Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating(ECRH)are studied in the HL-2A tokamak by laser blow-off(LBO) technique.The progression of aluminium ions as t...Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating(ECRH)are studied in the HL-2A tokamak by laser blow-off(LBO) technique.The progression of aluminium ions as the trace impurity is monitored by soft x-ray(SXR) and bolometer detector arrays with good temporal and spatial resolutions.Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed.Based on the numerical simulation with one-dimensional(1D) impurity transport code STRAHL,the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot.The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case,and that the convection velocity V changes from negative(inward) for the Ohmic case to partially positive(outward) for the ECRH case.The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.展开更多
To investigate the relation of two different mutations to the outcome of partial external biliary diversion (PEBD) in severe bile salt export pump (BSEP) deficiency. METHODSMutations in the gene encoding BSEP leading ...To investigate the relation of two different mutations to the outcome of partial external biliary diversion (PEBD) in severe bile salt export pump (BSEP) deficiency. METHODSMutations in the gene encoding BSEP leading to severe BSEP deficiency in two unrelated patients were identified by genomic sequencing. Native liver biopsies and transiently transfected human embryonic kidney (HEK) 293 cells expressing either wild-type or mutated BSEP were subjected to immunofluorescence analysis to assess BSEP transporter localization. Bile acid profiles of patient and control bile samples were generated by ultra-performance liquid chromatography-tandem mass spectrometry. Wild-type and mutant BSEP transport of [<sup>3</sup>H]-labeled taurocholate (TC) and taurochenodeoxycholate (TCDC) was assessed by vesicular transport assays. RESULTSA girl (at 2 mo) presented with pruritus, jaundice and elevated serum bile salts (BS). PEBD stabilized liver function and prevented liver transplantation. She was heterozygous for the BSEP deletion p.T919del and the nonsense mutation p.R1235X. At the age of 17 years relative amounts of conjugated BS in her bile were normal, while total BS were less than 3% as compared to controls. An unrelated boy (age 1.5 years) presenting with severe pruritus and elevated serum BS was heterozygous for the same nonsense and another missense mutation, p.G1032R. PEBD failed to alleviate pruritus, eventually necessitating liver transplantation. BS concentration in bile was about 5% of controls. BS were mainly unconjugated with an unusual low amount of chenodeoxycholate derivatives (< 5%). The patients’ native liver biopsies showed canalicular BSEP expression. Both BSEP p.T919del and p.G1032R were localized in the plasma membrane in HEK293 cells. In vitro transport assays showed drastic reduction of transport by both mutations. Using purified recombinant BSEP as quantifiable reference, per-molecule transport rates for TC and TCDC were determined to be 3 and 2 BS molecules per wild-type BSEP transporter per minute, respectively. CONCLUSIONIn summary, our findings suggest that residual function of BSEP as well as substrate specificity influence the therapeutic effectiveness of PEBD in progressive familial intrahepatic cholestasis type 2 (PFIC-2).展开更多
We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different p...We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y) = Vp(-x,y)can generate the largest valleypolarized current. The valley-polarized currents I13~L with the pumping potential symmetry Vp(x,y) =Vp(x,-y,) and I14~L with Vp(x,y) = Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13~L and I14~L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)= Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y) = Vp(-x,-y) decreases as the dephasing strength increases.展开更多
Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health...Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health Organization (WHO). The efflux pumps are the main cause for the increasing antibiotic resistance of A. baumannii originated from nosocomial infection. The progressive resistance of A. baumannii even on the recent drugs (tigecycline and fosfomycin) reduces to very effective antibiotic scale. With attention focused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, verapamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants (Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus europaeus, and Rosmarinus officinalis) have the capability to have such compounds according to their very significant synergistic effect with antibiotics. In this review we focused on the growth of antibiotic resistance to explain the mechanism of efflux pumps into these different super families and a comprehensive understanding of the extrusion, regulation and physiology role of drug efflux pumps in the essential development of anti-resistivity drugs. We recapitulated the evolution of the work carried out in these fields during the last years and in the course of elaboration, with the aim of increasing the chances of decreasing bacterial resistivity to antibiotics.展开更多
Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders incl...Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer's disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.展开更多
We report the temperature dependence of the spin pumping effect for Y_(3)Fe_(5)O_(12)(YIG,0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm)heterostructures.All samples exhibit a strong temperature-dependent inv...We report the temperature dependence of the spin pumping effect for Y_(3)Fe_(5)O_(12)(YIG,0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm)heterostructures.All samples exhibit a strong temperature-dependent inverse spin Hall effect(ISHE)signal I_(c)and sensitivity to the NiO layer thickness.We observe a dramatic decrease of I_(c)with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W.In contrast to the noticeable enhancement in YIG/NiO(tNiO≈1-2 nm)/Pt,the suppression of spin transport may be closely related to the specific interface-dependent spin scattering,spin memory loss,and spin conductance at the NiO/W interface.Besides,the I_(c)of YIG/Ni O/W exhibits a maximum near the TNof the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons.展开更多
基金the National High Technology Research and Development Program of China (863 Program) (No. 2002AA616050).
文摘To measure the void fraction online in oil-gas pipeline, an improved electrical capacitance tomography (ECT) system has been designed. The capacitance sensor with new structure has twelve internal electrodes and overcomes the influence of the pipe wall. The data collection system is improved by using high performance IC (integrated circuit). Static tests of bubble flow, stratified flow and annular flow regime are carried out. Measurements are taken on bubble flow, stratified flow and slug flow. Results show that the new ECT system performs well on void fraction measurement of bubble flow and stratified flow, but the error of measurement for slug flow is more than 10%.
基金9~(th) 5-year plan key project of the Chinese Academy of Sciences(KZ951-A1-405),NSFC(59476041)National 863 High Technology Youth Foundation(820-Q-013)
文摘Presented is an experimental study on the performance of an oil-gas multiphase transportation system, especially on the multiphase flow patterns, multiphase pumping and multiphase metering of the system. A dynamic simulation analysis is conducted to deduce simulation parameters of the system and similarity criteria under simplified conditions are obtained. The reliability and feasibility of two-phase flow experiment with oil and natural gas simulated by water and air are discussed by using the similarity criteria.
文摘Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission coefficient occur and can be explained by the local electron density of states in the quantum dots. The effects of the optical pumping frequency and intensity on the transport properties of the system are also discussed. The electron dynamical localization phenomenon occurs when the optical pumping frequency is equal to the discrete hole energy level. This result can be used to realize optical control switches.
基金the China Scholarship Council for sponsoring Dakui Wang’svisit to Horn Point Laboratory of University of Marylandthe National Nature Science Foundation of China(Grants Nos.41076011,40531006,41106024 and 40976014)the National Basic Research Program of China(Grant No.2011CB403600)
文摘Relative roles of Ekman transport and Ekman pumping in driving summer upwelling in the South China Sea (SCS) are examined using QuikSCAT scatterometer wind data. The major upwelling regions in the SCS are the coastal regions east and south- east of Vietnam (UESEV), east and southeast of Hainan Island (UESEH), and southeast of Guangdong province (USEG). It is shown that the Ekman transport due to alongshore winds and Ekman pumping due to offshore wind stress curl play different roles in the three upwelling systems. In UESEV, Ekman pumping and Ekman transport are equally important in generating upwelling. The Ek- man transport increases linearly from 0.49 Sv in May to 1.23 Sv in August, while the Ekman pumping increases from 0.36 to 1.22 Sv during the same period. In UESEH, the mean estimates of Ekman transport and Ekman pumping are 0.14 and 0.07 Sv, respectively, indicating that 33% of the total wind-driven upwelling is due to Ekman pumping. In USEC~ the mean Ekman transport is 0.041 Sv with the peak occurring in July, while Ekman pumping is much smaller (0.003 on average), indicating that the upwelling in this area is primarily driven by Ekman transport. In the summers of 2003 and 2007 following E1 Nifio-Southern Oscillation (ENSO) events, both Ekman transport and Ekman pumping decrease in UESEV due to the abnormally weak southwest monsoon. During the same events, however, Ekman transport is slightly enhanced and Ekman pumping is weakened in UESEH and USEG.
基金funded by the National Science Foundation of China (40976005 and 40930844)
文摘The wave Coriolis-Stokes-Force-modified ocean momentum equations are reviewed in this paper and the wave Stokes transport is pointed out to be part of the ocean circulations. Using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data(ERA-40 data) and the Simple Ocean Data Assimilation(SODA) version 2.2.4 data, the magnitude of this transport is compared with that of wind-driven Sverdrup transport and a 5-to-10-precent contribution by the wave Stokes transport is found. Both transports are stronger in boreal winter than in summers. The wave effect can be either contribution or cancellation in different seasons. Examination with Kuroshio transport verifies similar seasonal variations. The clarification of the efficient wave boundary condition helps to understand the role of waves in mass transport. It acts as surface wind stress and can be functional down to the bottom of the ageostrophic layer. The pumping velocities resulting from wave-induced stress are zonally distributed and are significant in relatively high latitudes. Further work will focus on the model performance of the wave-stress-changed-boundary and the role of swells in the eastern part of the oceans.
基金Project partly supported by the National Natural Science Foundation of China(Grant Nos.11375057 and 11175061)the Chinese National Magnetic Confinement Fusion Science Program(Grant No.2014GB108003)
文摘Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating(ECRH)are studied in the HL-2A tokamak by laser blow-off(LBO) technique.The progression of aluminium ions as the trace impurity is monitored by soft x-ray(SXR) and bolometer detector arrays with good temporal and spatial resolutions.Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed.Based on the numerical simulation with one-dimensional(1D) impurity transport code STRAHL,the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot.The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case,and that the convection velocity V changes from negative(inward) for the Ohmic case to partially positive(outward) for the ECRH case.The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.
基金Supported by the German -Research Foun-dation-through the Clin-ical Research Group KFO217“Hepatobiliary tran-sport an-d liver diseases”the Collaborative Research Cen-tre 974“Commun-ication-an-d Systemic Relevan-ce in-Liver Damage an-d Regen-eration-”
文摘To investigate the relation of two different mutations to the outcome of partial external biliary diversion (PEBD) in severe bile salt export pump (BSEP) deficiency. METHODSMutations in the gene encoding BSEP leading to severe BSEP deficiency in two unrelated patients were identified by genomic sequencing. Native liver biopsies and transiently transfected human embryonic kidney (HEK) 293 cells expressing either wild-type or mutated BSEP were subjected to immunofluorescence analysis to assess BSEP transporter localization. Bile acid profiles of patient and control bile samples were generated by ultra-performance liquid chromatography-tandem mass spectrometry. Wild-type and mutant BSEP transport of [<sup>3</sup>H]-labeled taurocholate (TC) and taurochenodeoxycholate (TCDC) was assessed by vesicular transport assays. RESULTSA girl (at 2 mo) presented with pruritus, jaundice and elevated serum bile salts (BS). PEBD stabilized liver function and prevented liver transplantation. She was heterozygous for the BSEP deletion p.T919del and the nonsense mutation p.R1235X. At the age of 17 years relative amounts of conjugated BS in her bile were normal, while total BS were less than 3% as compared to controls. An unrelated boy (age 1.5 years) presenting with severe pruritus and elevated serum BS was heterozygous for the same nonsense and another missense mutation, p.G1032R. PEBD failed to alleviate pruritus, eventually necessitating liver transplantation. BS concentration in bile was about 5% of controls. BS were mainly unconjugated with an unusual low amount of chenodeoxycholate derivatives (< 5%). The patients’ native liver biopsies showed canalicular BSEP expression. Both BSEP p.T919del and p.G1032R were localized in the plasma membrane in HEK293 cells. In vitro transport assays showed drastic reduction of transport by both mutations. Using purified recombinant BSEP as quantifiable reference, per-molecule transport rates for TC and TCDC were determined to be 3 and 2 BS molecules per wild-type BSEP transporter per minute, respectively. CONCLUSIONIn summary, our findings suggest that residual function of BSEP as well as substrate specificity influence the therapeutic effectiveness of PEBD in progressive familial intrahepatic cholestasis type 2 (PFIC-2).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11704190,11874221,and 11504240)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20171030)
文摘We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons(ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y) = Vp(-x,y)can generate the largest valleypolarized current. The valley-polarized currents I13~L with the pumping potential symmetry Vp(x,y) =Vp(x,-y,) and I14~L with Vp(x,y) = Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13~L and I14~L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)= Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y) = Vp(-x,-y) decreases as the dephasing strength increases.
文摘Acinetobacter baumannii has greatly increased its degree of resistance to become multidrug resistant (MDR) over the past 30 years and is on the red line of the most widely replicated bacteria according to World Health Organization (WHO). The efflux pumps are the main cause for the increasing antibiotic resistance of A. baumannii originated from nosocomial infection. The progressive resistance of A. baumannii even on the recent drugs (tigecycline and fosfomycin) reduces to very effective antibiotic scale. With attention focused on MDR and pan-drug-resistant (PDR) in A. baumannii multiple works on efflux pumps chemical inhibitor (NMP, PAβN, omeprazole, verapamil, reserpine, CCCP) are still in progress. Certain inhibitors from plants (Biricodar and timcodar, Falvone, Mahonia, Dalea versicolor, Lycopus europaeus, and Rosmarinus officinalis) have the capability to have such compounds according to their very significant synergistic effect with antibiotics. In this review we focused on the growth of antibiotic resistance to explain the mechanism of efflux pumps into these different super families and a comprehensive understanding of the extrusion, regulation and physiology role of drug efflux pumps in the essential development of anti-resistivity drugs. We recapitulated the evolution of the work carried out in these fields during the last years and in the course of elaboration, with the aim of increasing the chances of decreasing bacterial resistivity to antibiotics.
基金Supported by The National Institutes of Health (NS51769)the Mayo Foundation for Education and Research
文摘Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca 2+ ). Inappropriate Ca 2+ signaling and abnormal Ca 2+ levels are involved in many clinical disorders including heart disease, Alzheimer's disease and stroke. Ca 2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular "toolkit" needed to ensure proper Ca 2+ homeostasis in the cell, as well as on the mechanisms of localized Ca 2+ signaling. A longterm focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca 2+ levels, but also to local Ca 2+ signaling and vectorial Ca 2+ transport. A second major research arearevolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.
基金support from the National Natural Science Foundation of China(Grant Nos.11774160,61427812,61805116,12004171,61774081,and 62171096)the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20192006)+4 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.51827802)the Natural Science Foundation of Jiangsu Province of China(Grant Nos.BK20180056 and BK20200307)the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province,China(Grant No.BK20200309)the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology,the Scientific Foundation of Nanjing University of Posts and Telecommunications(NUPTSF)(Grant No.NY220164)the State Key R&D Project of Guangdong,China(Grant No.2020B010174002)
文摘We report the temperature dependence of the spin pumping effect for Y_(3)Fe_(5)O_(12)(YIG,0.9μm)/NiO(tNiO)/W(6 nm)(tNiO=0 nm,1 nm,2 nm,and 10 nm)heterostructures.All samples exhibit a strong temperature-dependent inverse spin Hall effect(ISHE)signal I_(c)and sensitivity to the NiO layer thickness.We observe a dramatic decrease of I_(c)with inserting thin NiO layer between YIG and W layers indicating that the inserting of NiO layer significantly suppresses the spin transport from YIG to W.In contrast to the noticeable enhancement in YIG/NiO(tNiO≈1-2 nm)/Pt,the suppression of spin transport may be closely related to the specific interface-dependent spin scattering,spin memory loss,and spin conductance at the NiO/W interface.Besides,the I_(c)of YIG/Ni O/W exhibits a maximum near the TNof the AF NiO layer because the spins are transported dominantly by incoherent thermal magnons.