In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when sign...In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.展开更多
Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analy...Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.展开更多
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ...In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.展开更多
With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety ...With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel.展开更多
With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machine...With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.展开更多
The utilization of thin plate systems based on acoustic vibration holds significant importance in micro-nano manipulation and the exploration of nonlinear science. This paper focuses on the analysis of an actual thin ...The utilization of thin plate systems based on acoustic vibration holds significant importance in micro-nano manipulation and the exploration of nonlinear science. This paper focuses on the analysis of an actual thin plate system driven by acoustic wave signals. By combining the mechanical analysis of thin plate microelements with the Bubnov–Galerkin integral method, the governing equation for the forced vibration of a square thin plate is derived. Notably,the reaction force of the thin plate vibration system is defined as f=α|w|, resembling Hooke’s law. The energy function and energy level curve of the system are also analyzed. Subsequently, the amplitude–frequency response function of the thin plate oscillator is solved using the harmonic balance method. Through numerical simulations, the amplitude–frequency curves are analyzed for different vibration modes under the influence of various parameters. Furthermore, the paper demonstrates the occurrence of conservative chaotic motions in the thin plate oscillator using theoretical and numerical methods. Dynamics maps illustrating the system’s states are presented to reveal the evolution laws of the system. By exploring the effects of force fields and system energy, the underlying mechanism of chaos is interpreted. Additionally, the phenomenon of chaos in the oscillator can be controlled through the method of velocity and displacement states feedback, which holds significance for engineering applications.展开更多
As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPb...As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPbCl_(3)micro/nanocrystals by vapor depo-sition method with CsCl and PbCl_(2)powders as the source materials.It was con rmed that the formation of CsPbCl_(3)perovskite through the chemical reaction of CsCl with PbCl_(2)occurred in the quartz boat before the source evaporation,not in vapor or on sub-strate surface.The evaporated CsPbCl_(3)can form micro/nanocrystals on substrate surfaces under appropriate conditions.Various morphologies including irregular polyhedrons,rods and pyramids could be observed at lower temperature,while stable and uniform CsPbCl_(3)single crystal microplatelets were controllably synthesized at 450℃.Prolonging the growth time could modulate the size and density of the microcrystals,but could not change the morphology.Substrate types made little di erence to the morphology of CsPbCl_(3)crystals.The photoluminescence spectra indicated that the crystallinity and morphology of CsPbCl_(3)micro/nanocrystals have signi cant e ects on their optical properties.The work is expected to be helpful to the development of optoelectronic devices based on individual CsPbCl_(3)microcrystal.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting eff...This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.展开更多
The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock m...The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.展开更多
Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ...Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.展开更多
Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we p...Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.展开更多
In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied sy...In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.展开更多
In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation o...In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.展开更多
Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-a...Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.展开更多
First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provi...First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.展开更多
To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method...To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.展开更多
After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting cont...After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.展开更多
Filament winding has emerged as the main process for carbon fiber reinforced plastic(CFRP) fabrication, and tension control plays a key role in enhancing the quality of the winding products. With the continuous improv...Filament winding has emerged as the main process for carbon fiber reinforced plastic(CFRP) fabrication, and tension control plays a key role in enhancing the quality of the winding products. With the continuous improvement of prod?uct quality and e ciency, the precision of the tension control system is constantly improving. In this paper, a novel tension control method is proposed, which can regulate the fiber tension and transport speed of the winding process by governing the outputs of three di erent driven rollers(the torque of the unwind roll, the torque of the magnetic powder brake roller, and the speed of the master speed roller) in three levels. The mechanical structures and dynamic models of the driven rollers and idle rollers are established by considering the time?varying features of the roller radius and inertia. Moreover, the influence of parameters and speed variation on fiber tension is investigated using the increment model. Subsequently, the control method is proposed by applying fiber tension in three levels accord?ing to the features of the three driven rollers. An adaptive fuzzy controller is designed for tuning the PID parameters online to control the speed of the master speed roller. Simulation is conducted for verifying the performance and sta?bility of the proposed tension control method by comparing with those of the conventional PID control method. The result reveals that the proposed method outperforms the conventional method. Finally, an experimental platform is constructed, and the proposed system is applied to a winding machine. The performance and stability of the tension control system are demonstrated via a series of experiments using carbon fiber under di erent reference speeds and tensions. This paper proposes a novel tension control method to regulate the fiber tension and transport speed.展开更多
基金Project supported by the National Key Research and Development Program of China(No.2022YFB3203600)the National Natural Science Foundation of China(Nos.12172323,12132013+1 种基金12332003)the Zhejiang Provincial Natural Science Foundation of China(No.LZ22A020003)。
文摘In the realm of acoustic signal detection,the identification of weak signals,particularly in the presence of negative signal-to-noise ratios,poses a significant challenge.This challenge is further heightened when signals are acquired through fiber-optic hydrophones,as these signals often lack physical significance and resist clear systematic modeling.Conventional processing methods,e.g.,low-pass filter(LPF),require a thorough understanding of the effective signal bandwidth for noise reduction,and may introduce undesirable time lags.This paper introduces an innovative feedback control method with dual Kalman filters for the demodulation of phase signals with noises in fiber-optic hydrophones.A mathematical model of the closed-loop system is established to guide the design of the feedback control,aiming to achieve a balance with the input phase signal.The dual Kalman filters are instrumental in mitigating the effects of signal noise,observation noise,and control execution noise,thereby enabling precise estimation for the input phase signals.The effectiveness of this feedback control method is demonstrated through examples,showcasing the restoration of low-noise signals,negative signal-to-noise ratio signals,and multi-frequency signals.This research contributes to the technical advancement of high-performance devices,including fiber-optic hydrophones and phase-locked amplifiers.
基金supported by the Na-tional Natural Science Foundation of China(No.52272369).
文摘Aiming at the time-optimal control problem of hypersonic vehicles(HSV)in ascending stage,a trigonometric regularization method(TRM)is introduced based on the indirect method of optimal control.This method avoids analyzing the switching function and distinguishing between singular control and bang-bang control,where the singular control problem is more complicated.While in bang-bang control,the costate variables are unsmooth due to the control jumping,resulting in difficulty in solving the two-point boundary value problem(TPBVP)induced by the indirect method.Aiming at the easy divergence when solving the TPBVP,the continuation method is introduced.This method uses the solution of the simplified problem as the initial value of the iteration.Then through solving a series of TPBVP,it approximates to the solution of the original complex problem.The calculation results show that through the above two methods,the time-optimal control problem of HSV in ascending stage under the complex model can be solved conveniently.
文摘In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results.
文摘With the rapid development of China’s civil aviation industry,the teaching method of operating knowledge of flight principles has changed greatly,which creates a good implementation environment to improve the safety of civil aviation in our country.At present,the main training content of air route transport pilots in China is basic aviation theory,initial flight training,airline modification,etc.The principles of flight control are an important part of basic aviation theoretical knowledge training,which will involve a large number of flight technology training content,instructors will also be based on the pilot type.Teaching flight control theory and practical knowledge requires relatively high theoretical learning ability of students,and the learning effect of this part of theoretical knowledge will directly affect the quality of subsequent learning,but also directly affect the effectiveness of flight training.This paper focuses on the analysis of the basic concepts of flight control,studies the existing problems in the teaching of flight control principles,summarizes the teaching measures of flight control principles,aiming to provide a reference to teaching personnel.
基金This research was supported financially by the China Postdoctoral Science Foundation,the National Natural Science Foundation of China(Grant No.51705132)the Young Backbone Teacher Training Program in Henan University of Technology,the Education Department of Henan Province Natural Science Project(Grant No.21A460006)the Natural Science Project of Henan Provincial Department of Science and Technology(Grant No.222102220088).
文摘With ongoing economic,scientific,and technological developments,the electronic devices used in daily lives are developing toward precision and miniaturization,and so the demand for high-precision manufacturing machinery is expanding.The most important piece of equipment in modern high-precision manufacturing is the macro-micro motion platform(M3P),which offers high speed,precision,and efficiency and has macro-micro motion coupling characteristics due to its mechanical design and composition of its driving components.Therefore,the design of the control system is crucial for the overall precision of the platform;conventional proportional–integral–derivative control cannot meet the system requirements,and so M3Ps are the subject of a growing range of modern control strategies.This paper begins by describing the development history of M3Ps,followed by their platform structure and motion control system components,and then in-depth assessments of the macro,micro,and macro-micro control systems.In addition to examining the advantages and disadvantages of current macro-micro motion control,recent technological breakthroughs are noted.Finally,based on existing problems,future directions for M3P control systems are given,and the present conclusions offer guidelines for future work on M3Ps.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61973172, 62003177, 62103204, 62003175, and 61973175)the Joint Fund of the Ministry of Education for Equipment Pre-research (Grant No. 8091B022133)General Terminal IC Interdisciplinary Science Center of Nankai University。
文摘The utilization of thin plate systems based on acoustic vibration holds significant importance in micro-nano manipulation and the exploration of nonlinear science. This paper focuses on the analysis of an actual thin plate system driven by acoustic wave signals. By combining the mechanical analysis of thin plate microelements with the Bubnov–Galerkin integral method, the governing equation for the forced vibration of a square thin plate is derived. Notably,the reaction force of the thin plate vibration system is defined as f=α|w|, resembling Hooke’s law. The energy function and energy level curve of the system are also analyzed. Subsequently, the amplitude–frequency response function of the thin plate oscillator is solved using the harmonic balance method. Through numerical simulations, the amplitude–frequency curves are analyzed for different vibration modes under the influence of various parameters. Furthermore, the paper demonstrates the occurrence of conservative chaotic motions in the thin plate oscillator using theoretical and numerical methods. Dynamics maps illustrating the system’s states are presented to reveal the evolution laws of the system. By exploring the effects of force fields and system energy, the underlying mechanism of chaos is interpreted. Additionally, the phenomenon of chaos in the oscillator can be controlled through the method of velocity and displacement states feedback, which holds significance for engineering applications.
基金supported by the National Natu-ral Science Foundation of China(No.11575187)the National Key Research and Development Program(No.2016YFB0700205).
文摘As a direct wide bandgap semiconductor,CsPbCl_(3)has great potential applications in the eld of near-ultraviolet photodetectors,lasers and higher-order multiphoton uores-cent detectors.In this work,we synthesized CsPbCl_(3)micro/nanocrystals by vapor depo-sition method with CsCl and PbCl_(2)powders as the source materials.It was con rmed that the formation of CsPbCl_(3)perovskite through the chemical reaction of CsCl with PbCl_(2)occurred in the quartz boat before the source evaporation,not in vapor or on sub-strate surface.The evaporated CsPbCl_(3)can form micro/nanocrystals on substrate surfaces under appropriate conditions.Various morphologies including irregular polyhedrons,rods and pyramids could be observed at lower temperature,while stable and uniform CsPbCl_(3)single crystal microplatelets were controllably synthesized at 450℃.Prolonging the growth time could modulate the size and density of the microcrystals,but could not change the morphology.Substrate types made little di erence to the morphology of CsPbCl_(3)crystals.The photoluminescence spectra indicated that the crystallinity and morphology of CsPbCl_(3)micro/nanocrystals have signi cant e ects on their optical properties.The work is expected to be helpful to the development of optoelectronic devices based on individual CsPbCl_(3)microcrystal.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11902081)the Science and Technology Projects of Guangzhou (Grant No. 202201010326)the Guangdong Provincial Basic and Applied Basic Research Foundation (Grant No. 2023A1515010833)。
文摘This paper focuses on the stochastic analysis of a viscoelastic bistable energy harvesting system under colored noise and harmonic excitation, and adopts the time-delayed feedback control to improve its harvesting efficiency. Firstly, to obtain the dimensionless governing equation of the system, the original bistable system is approximated as a system without viscoelastic term by using the stochastic averaging method of energy envelope, and then is further decoupled to derive an equivalent system. The credibility of the proposed method is validated by contrasting the consistency between the numerical and the analytical results of the equivalent system under different noise conditions. The influence of system parameters on average output power is analyzed, and the control effect of the time-delayed feedback control on system performance is compared. The output performance of the system is improved with the occurrence of stochastic resonance(SR). Therefore, the signal-to-noise ratio expression for measuring SR is derived, and the dependence of its SR behavior on different parameters is explored.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41941019,42177142)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant NO.2019QZKK0904)the Fundamental Research Funds for the Central Universities,CHD(Grant No.300102212213).
文摘The instability of slope blocks occurred frequently along traffic corridor in Southeastern Tibet(TCST),which was primarily controlled by the rock mass structures.A rapid method evaluating the control effects of rock mass structures was proposed through field statistics of the slopes and rock mass structures along TCST,which combined the stereographic projection method,modified M-JCS model,and limit equilibrium theory.The instabilities of slope blocks along TCST were then evaluated rapidly,and the different control factors of instability were analyzed.Results showed that the probabilities of toppling(5.31%),planar(16.15%),and wedge(35.37%)failure of slope blocks along TCST increased sequentially.These instability modes were respectively controlled by the anti-dip joint,the joint parallel to slope surface with a dip angle smaller than the slope angle(singlejoint),and two groups of joints inclined out of the slope(double-joints).Regarding the control effects on slope block instability,the stabilization ability of doublejoints(72.7%),anti-dip joint(67.4%),and single-joint(57.6%)decreased sequentially,resulting in different probabilities of slope block instability.Additionally,nearby regional faults significantly influenced the joints,leading to spatial heterogeneity and segmental clustering in the stabilization ability provided by joints to the slope blocks.Consequently,the stability of slope blocks gradually weakened as they approached the fault zones.This paper can provide guidance and assistance for investigating the development characteristics of rock mass structures and the stability of slope blocks.
基金supported by the Fundamental Research Funds for the Central Universities(DUT22RT(3)090)the National Natural Science Foundation of China(61890920,61890921,62122016,08120003)Liaoning Science and Technology Program(2023JH2/101700361).
文摘Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.
基金supported by the DOE-MMICS SEA-CROGS DE-SC0023191 and the AFOSR MURI FA9550-20-1-0358supported by the SMART Scholarship,which is funded by the USD/R&E(The Under Secretary of Defense-Research and Engineering),National Defense Education Program(NDEP)/BA-1,Basic Research.
文摘Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.
基金supported in part by the National Key R&D Program of China under Grants 2021YFE0206100in part by the National Natural Science Foundation of China under Grant 62073321+2 种基金in part by National Defense Basic Scientific Research Program JCKY2019203C029in part by the Science and Technology Development Fund,Macao SAR under Grants FDCT-22-009-MISE,0060/2021/A2 and 0015/2020/AMJin part by the financial support from the National Defense Basic Scientific Research Project(JCKY2020130C025).
文摘In this paper,a new optimal adaptive backstepping control approach for nonlinear systems under deception attacks via reinforcement learning is presented in this paper.The existence of nonlinear terms in the studied system makes it very difficult to design the optimal controller using traditional methods.To achieve optimal control,RL algorithm based on critic–actor architecture is considered for the nonlinear system.Due to the significant security risks of network transmission,the system is vulnerable to deception attacks,which can make all the system state unavailable.By using the attacked states to design coordinate transformation,the harm brought by unknown deception attacks has been overcome.The presented control strategy can ensure that all signals in the closed-loop system are semi-globally ultimately bounded.Finally,the simulation experiment is shown to prove the effectiveness of the strategy.
文摘In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.
文摘Objectives: To assess respiratory elastance and resistive properties in patients with autoimmune liver disorders using the passive relaxation expiration technique and compare findings to a group of patients with non-autoimmune liver disease and control subjects. These findings were then related to control of ventilation and gas exchange. A secondary objective was to assess respiratory muscle strength and gas exchange and their relation to respiratory mechanics. Methods: Measurements included respiratory elastance and resistance using the passive relaxation method. Pulmonary function, gas exchange and control of ventilation were assessed using standard methods. Results: a) Compared to control subjects, Ers in patients with liver disease was on average 50% greater than in controls;b) mean respiratory resistance, expressed as the respiratory constants, K<sub>1</sub> and K<sub>2</sub> in the Rohrer relationship, Pao/V’ = K<sub>1</sub> + K<sub>2</sub>V’, was not different from control resistance;c) mean maximal inspiratory and maximal expiratory pressures averaged 36% and 55% of their respective control values;d) inspiratory occlusion pressure in 0.1 sec (P<sub>0.1</sub>) was increased and negatively associated with FVC;and e) increases in P<sub>0.1</sub>, mean inspiratory flow (Vt/Ti) and presence of respiratory alkalosis confirmed the increase in ventilatory drive. Despite inspiratory muscle weakness in patients, P<sub>0.1</sub>/Pimax averaged 5-fold higher than in control subjects. Conclusions: Despite inspiratory muscle weakness and a V’<sub>E</sub> similar to that in normal subjects, central drive is increased in patients with chronic liver disease. The increase in ventilatory drive is related to smaller lung volumes and weakly associated with increase in respiratory elastance. Findings confirm that P<sub>0.1</sub> is a reliable measure of central drive and is an approach that can be used in the evaluation of control of ventilation in patients with chronic liver disease.
文摘First at all, it introduced the concept and the damages of continuous cropping obstacle. Then, it analyzed the causes of continuous cropping obstacles for Atractylodes macrocephala Koidz. In the end, in order to provide guidance for pro- moting sustainable development of Atractylodes macrocephala Koidz industry in Pingjiang County, it put forward some control methods for eliminating continuous cropping obstacles of Atractylodes macrocephala Koidz, including breeding varieties with high resistance; applying rotation cropping and intercropping reasonable; rational fertilization and soil disinfection; introducing antagonistic bacterial and eliminating au- tointoxication.
文摘To study the domain decomposition algorithms for the equations of elliptic type, the method of optimal boundary control was used to advance a new procedure for domain decomposition algorithms and regularization method to deal with the ill posedness of the control problem. The determination of the value of the solution of the partial differential equation on the interface——the key of the domain decomposition algorithms——was transformed into a boundary control problem and the ill posedness of the control problem was overcome by regularization. The convergence of the regularizing control solution was proven and the equations which characterize the optimal control were given therefore the value of the unknown solution on the interface of the domain would be obtained by solving a series of coupling equations. Using the boundary control method the domain decomposion algorithm can be carried out.
文摘After the trajectory simulation model of rudder control rocket with six degrees of freedom is established by Matlab/ Simulink, the simulated targeting of rudder control rocket with rudder angle error and starting control moment error is carried out respectively by means of Monte Carlo method and the distribution of impact points of rudder control rocket is counted from all the successful subsamples. In the case of adding interference errors associated with rudder angle error and starting time error, the simulation analysis of impact point dispersion is done and its lateral and longitudinal correction abilities at different targeting angles are simulated to identify the effects of these factors on characteristics and control precision of the rudder control rocket, which provides the relevant reference for high-precision design of rudder control system.
基金Supported by National Natural Science Foundation of China(Grant No.51575018)
文摘Filament winding has emerged as the main process for carbon fiber reinforced plastic(CFRP) fabrication, and tension control plays a key role in enhancing the quality of the winding products. With the continuous improvement of prod?uct quality and e ciency, the precision of the tension control system is constantly improving. In this paper, a novel tension control method is proposed, which can regulate the fiber tension and transport speed of the winding process by governing the outputs of three di erent driven rollers(the torque of the unwind roll, the torque of the magnetic powder brake roller, and the speed of the master speed roller) in three levels. The mechanical structures and dynamic models of the driven rollers and idle rollers are established by considering the time?varying features of the roller radius and inertia. Moreover, the influence of parameters and speed variation on fiber tension is investigated using the increment model. Subsequently, the control method is proposed by applying fiber tension in three levels accord?ing to the features of the three driven rollers. An adaptive fuzzy controller is designed for tuning the PID parameters online to control the speed of the master speed roller. Simulation is conducted for verifying the performance and sta?bility of the proposed tension control method by comparing with those of the conventional PID control method. The result reveals that the proposed method outperforms the conventional method. Finally, an experimental platform is constructed, and the proposed system is applied to a winding machine. The performance and stability of the tension control system are demonstrated via a series of experiments using carbon fiber under di erent reference speeds and tensions. This paper proposes a novel tension control method to regulate the fiber tension and transport speed.