This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity...This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity problems with two relaxation times (i.e., the G-L theory) are derived using the principle of virtual work. For avoiding numerical complication involved in inverse Laplace and Fourier transformation and low precision thereof, the equations are solved directly in time-domain. As a numerical example, the derived equation is used to investigate the generalized magneto-thermoelastic behavior of a semi-infinite plate under magnetic field and subjecting to a thermal shock loading. The results demonstrate that FEM can faithfully predict the deformation of the plate and the induced magnetic field, and most importantly can reveal the sophisticated second sound effect of heat conduction in two-dimensional generalized thermoelastic solids, which is usually difficult to model by routine transformation methods. A peak can be observed in the distribution of stress and induced front and the magnitude of magnetic field at the heat wave the peak decreases with time, which can not be obtained by transformation methods. The new method can also be used to study generalized piezo-thermoelastic problems.展开更多
Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular w...Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization ...Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
Insect flight is a complex trait involved in different behaviors,from the search for sexual partners,food,or breeding sites.Many studies have postulated the adaptive advantages of certain morphological traits in relat...Insect flight is a complex trait involved in different behaviors,from the search for sexual partners,food,or breeding sites.Many studies have postulated the adaptive advantages of certain morphological traits in relation to increased flight capacity,such as low values of wing loading or high values of wing:thorax ratio and wing-aspect ratio.However,few studies have evaluated the relationship between variables related to flight and morphological traits in Drosophila.This work aimed to study morphological traits in males and females of two pairs of sibling species:Drosophila buzzati Patterson and Wheeler-Drosophila koeferae Fontdevila and Wasserman,and Drosophila melanogaster Meigen-Drosophila simulans Sturtevant,and to analyze its relationship with flight.We detected the highest proportion of flight time in D.koepferae and D.simulans compared to D.buzzati and D.melanogaster,respectively.Our results also revealed sexual dimorphism,with males exhibiting a higher proportion of flight time than females.Surprisingly,we did not find a general pattern to explain the relationship between morphology and the proportion of flight time because associations varied depending upon the analyses(considering all groups together or each sex-species combination separately).Moreover,these associations explained a low percentage of variation,suggesting that other nonmorphological components related to flight,such as physiological variables,should be taken into account.This work allowed us to show the variability and complexity of an aspect of flight,suggesting that the adaptive role of the morphological traits studied might have been overestimated.展开更多
We apply the dynamic programming methods to compute the analytical solution of the dynamic mean-variance optimization problem affected by an exogenous liability in a multi-periods market model with singular second mom...We apply the dynamic programming methods to compute the analytical solution of the dynamic mean-variance optimization problem affected by an exogenous liability in a multi-periods market model with singular second moment matrixes of the return vector of assets. We use orthogonai transformations to overcome the difficulty produced by those singular matrixes, and the analytical form of the efficient frontier is obtained. As an application, the explicit form of the optimal mean-variance hedging strategy is also obtained for our model.展开更多
To avoid the high computational cost and much modification in the process of applying traditional reliability-based design optimization method, a new reliability-based concurrent subspace optimization approach is prop...To avoid the high computational cost and much modification in the process of applying traditional reliability-based design optimization method, a new reliability-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and reliability assessment methods. It is shown through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.展开更多
The phenomenon of phase transition in constraint satisfaction problems (CSPs) plays a crucial role in the field of artificial intelligence and computational complexity theory. In this paper, we propose a new random CS...The phenomenon of phase transition in constraint satisfaction problems (CSPs) plays a crucial role in the field of artificial intelligence and computational complexity theory. In this paper, we propose a new random CSP called d-p-RB model, which is a generalization of RB model on domain size d and constraint tightness p. In this model, the variable domain size d?Ε [ nα, nny], and all constraints are uniformly divided into several groups with different constraint tightness p. It is proved by the second moment method that the d-p-RB model undergoes phase transition from a region where almost all instances are satisfiable to a region where almost all instances are unsatisfiable as the control parameter increases. Moreover, the threshold value at which the phase transition occurs is located exactly.展开更多
基金The project supported by the National Natural Science Foundation of China(10132010 and 10472089)
文摘This paper presents an investigation of temperature, displacement, stress, and induced magnetic field in a half space perfectly-conductive plate. Finite element equations regarding generalized magneto-thermoelasticity problems with two relaxation times (i.e., the G-L theory) are derived using the principle of virtual work. For avoiding numerical complication involved in inverse Laplace and Fourier transformation and low precision thereof, the equations are solved directly in time-domain. As a numerical example, the derived equation is used to investigate the generalized magneto-thermoelastic behavior of a semi-infinite plate under magnetic field and subjecting to a thermal shock loading. The results demonstrate that FEM can faithfully predict the deformation of the plate and the induced magnetic field, and most importantly can reveal the sophisticated second sound effect of heat conduction in two-dimensional generalized thermoelastic solids, which is usually difficult to model by routine transformation methods. A peak can be observed in the distribution of stress and induced front and the magnitude of magnetic field at the heat wave the peak decreases with time, which can not be obtained by transformation methods. The new method can also be used to study generalized piezo-thermoelastic problems.
基金the National Key R&D Program of China (Grant No.2016YFE0200100)the National Natural Science Foundation of China (Grant Nos.51490672 and 51479026).
文摘Nonlinear wave loads can induce low-frequency and high-frequency resonance motions of a moored platform in deep water. For the analysis of the nonlinear response of an offshore platform under the action of irregular waves, the most widely used method in practice is the Cummins method, in which the second-order exciting forces in the time domain are computed by a two-term Volterra series model based on incident waves, first-order body motion response, and quadratic transfer functions(QTFs). QTFs are bichromatic waves acting on a body and are computed in the frequency domain in advance. For moving bodies, QTFs are related to the first-order body response, which is to be determined in the simulation process of body motion response but is unknown in the computation procedure of QTFs. In solving this problem, Teng and Cong(2017) proposed a method to divide the QTFs into different components,which are unrelated to the body response. With the application of the new QTF components, a modified Cummins method can be developed for the simulation of the nonlinear response of a moored floating platform. This paper presents a review of the theory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
基金National Natural Science Foundation of China (10377015)
文摘Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
基金supported by funding of Agencia Nacional de Promocion Cientifica y Tecnologica granted to V.PC.(PICT-2018-00753 and PICT-2015-0277)and to JJF(PICT-2016-2256).
文摘Insect flight is a complex trait involved in different behaviors,from the search for sexual partners,food,or breeding sites.Many studies have postulated the adaptive advantages of certain morphological traits in relation to increased flight capacity,such as low values of wing loading or high values of wing:thorax ratio and wing-aspect ratio.However,few studies have evaluated the relationship between variables related to flight and morphological traits in Drosophila.This work aimed to study morphological traits in males and females of two pairs of sibling species:Drosophila buzzati Patterson and Wheeler-Drosophila koeferae Fontdevila and Wasserman,and Drosophila melanogaster Meigen-Drosophila simulans Sturtevant,and to analyze its relationship with flight.We detected the highest proportion of flight time in D.koepferae and D.simulans compared to D.buzzati and D.melanogaster,respectively.Our results also revealed sexual dimorphism,with males exhibiting a higher proportion of flight time than females.Surprisingly,we did not find a general pattern to explain the relationship between morphology and the proportion of flight time because associations varied depending upon the analyses(considering all groups together or each sex-species combination separately).Moreover,these associations explained a low percentage of variation,suggesting that other nonmorphological components related to flight,such as physiological variables,should be taken into account.This work allowed us to show the variability and complexity of an aspect of flight,suggesting that the adaptive role of the morphological traits studied might have been overestimated.
基金National Basic Research Program of China (973 Program No.2007CB814903)National Natural Science Foundation of China (No.70671069)
文摘We apply the dynamic programming methods to compute the analytical solution of the dynamic mean-variance optimization problem affected by an exogenous liability in a multi-periods market model with singular second moment matrixes of the return vector of assets. We use orthogonai transformations to overcome the difficulty produced by those singular matrixes, and the analytical form of the efficient frontier is obtained. As an application, the explicit form of the optimal mean-variance hedging strategy is also obtained for our model.
基金the Nationa Natural Science Foundation of China (Grant No. 10377015)
文摘To avoid the high computational cost and much modification in the process of applying traditional reliability-based design optimization method, a new reliability-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and reliability assessment methods. It is shown through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.
文摘The phenomenon of phase transition in constraint satisfaction problems (CSPs) plays a crucial role in the field of artificial intelligence and computational complexity theory. In this paper, we propose a new random CSP called d-p-RB model, which is a generalization of RB model on domain size d and constraint tightness p. In this model, the variable domain size d?Ε [ nα, nny], and all constraints are uniformly divided into several groups with different constraint tightness p. It is proved by the second moment method that the d-p-RB model undergoes phase transition from a region where almost all instances are satisfiable to a region where almost all instances are unsatisfiable as the control parameter increases. Moreover, the threshold value at which the phase transition occurs is located exactly.