期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
Geochronology and Geochemistry of the Xingxingxia Triassic A-type Granites in Central Tianshan,NW China:Petrogenesis and Tectonic Implications
1
作者 HUANG Zengbao LI Xiyao +1 位作者 ZHAO Hao LU Qing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期337-351,共15页
The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ... The Triassic granitoids in Central Tianshan play a key role in determining the petrogenesis and tectonic evolution on the southern margin of the Central Asian orogenic belt.In this study,we present SHRIMP zircon U-Pb ages,Hf isotopic and geochemical data on the Xingxingxia biotite granite,amazonite granite and granitic pegmatite in Central Tianshan,NW China.Zircon U-Pb dating yielded formation ages of 242 Ma for the biotite granite and 240 Ma for the amazonite granite.These granitoid rocks have high K_(2)O with low MgO and CaO contents.They are enriched in Nb,Ta,Hf and Y,while being depleted in Ba and Sr,showing flat HREE patterns and negative Eu anomalies.They have typical A-type granite geochemical signatures with high Ga/A_(1)(8–13)and TFeO/(TFeO+MgO)ratios,showing an A_(2) affinity for biotite granite and an A_(1) affinity for amazonite granite and granitic pegmatite.Zircon ε_(Hf)(t)values of the granitoids are 0.45–2.66,with Hf model ages of 0.99–1.17 Ga.This suggests that these A-type granites originated from partial melting of the lower crust.We propose that Xingxingxia Triassic A-type granites formed under lithospheric extension from post-orogenic to anorogenic intraplate settings and NE-trending regional strike-slip fault-controlled magma emplacement in the upper crust. 展开更多
关键词 TRIASSIC A-type granite Xingxingxia Central tianshan Central Asian orogenic belt
下载PDF
Tectonic evolution of the West Kunlun Orogenic Belt along the northern margin of the Tibetan Plateau:Implications for the assembly of the Tarim terrane to Gondwana 被引量:21
2
作者 Chuan-Lin Zhang Hai-Bo Zou +1 位作者 Xian-Tao Ye Xiang-Yan Chen 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第3期973-988,共16页
The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneo... The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneous rocks and ophiolites distributed mostly along the Xinjiang-Tibet road and the China-Pakistan road, and have constructed a preliminary tectonic model for this orogenic belt. However, few studies have focused on the so-called Precambrian basement in this area. As a result, the tectonic affinity of the individual terranes of the WKOB and their detailed evolution process are uncertain. Here we report new field observations, zircon and monazite U-Pb ages of the "Precambrian basement" of the South Kunlun terrane(SKT) and the Tianshuihai terrane(TSHT), two major terranes in the WKOB. Based on new zircon U-Pb age data, the amphibolite-facies metamorphosed volcanosedimentary sequence within SKT was deposited during the late Neoproterozoic to Cambrian(600-500 Ma), and the flysch-affinity Tianshuihai Group, as the basement of the TSHT, was deposited during the late Neoproterozoic rather than Mesoproterozoic. The rock association of the volcano-sedimentary sequence within SKT suggests a large early Paleozoic accretionary wedge formed by the long-term lowangle southward subduction of the Proto-Tethys Ocean between Tarim and TSHT. The amphibolitefacies metamorphism in SKT occurred at ca. 440 Ma. This ca. 440 Ma metamorphism is genetically related to the closure of the Proto-Tethys Ocean between Tarim and the Tianshuihai terrane, which led to the assembly of Tarim to Eastern Gondwana and the final formation of the Gondwana. Since the late Paleozoic to early Mesozoic, the northward subduction of the Paleo-Tethys Ocean along the HongshihuQiaoertianshan belt produced the voluminous early Mesozoic arc-signature granites along the southern part of NKT-TSHT. The Paleo-Tethys ocean between TSHT and Karakorum closed at ca. 200 Ma, as demonstrated by the monazite age of the paragneiss in the Kangxiwa Group. Our study does not favor the existence of a Precambrian basement in SKT. 展开更多
关键词 west KUNLUN orogenic belt TECTONIC unit Metamorphic basement Zircon and MONAZITE U-Pb dating TECTONIC evolution
下载PDF
Trace Element Geochemistry of Magnetite from the Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China 被引量:18
3
作者 HUANG Xiaowen QI Liang MENG Yumiao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第1期176-195,共20页
Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits ... Laser ablation–inductively coupled plasma–mass spectrometry(LA–ICP–MS) was used to determine the trace element concentrations of magnetite from the Heifengshan, Shuangfengshan, and Shaquanzi Fe(–Cu) deposits in the Eastern Tianshan Orogenic Belt. The magnetite from these deposits typically contains detectable Mg, Al, Ti, V, Cr, Mn, Co, Ni, Zn and Ga. The trace element contents in magnetite generally vary less than one order of magnitude. The subtle variations of trace element concentrations within a magnetite grain and between the magnetite grains in the same sample probably indicate local inhomogeneity of ore–forming fluids. The variations of Co in magnetite between samples are probably due to the mineral proportion of magnetite and pyrite. Factor analysis has discriminated three types of magnetite: Ni–Mn–V–Ti(Factor 1), Mg–Al–Zn(Factor 2), and Ga– Co(Factor 3) magnetite. Magnetite from the Heifengshan and Shuangfengshan Fe deposits has similar normalized trace element spider patterns and cannot be discriminated according to these factors. However, magnetite from the Shaquanzi Fe–Cu deposit has affinity to Factor 2 with lower Mg and Al but higher Zn concentrations, indicating that the ore–forming fluids responsible for the Fe–Cu deposit are different from those for Fe deposits. Chemical composition of magnetite indicates that magnetite from these Fe(–Cu) deposits was formed by hydrothermal processes rather than magmatic differentiation. The formation of these Fe(–Cu) deposits may be related to felsic magmatism. 展开更多
关键词 trace elements MAGNETITE LA–ICP–MS Fe(–Cu) deposits Eastern tianshan orogenic belt Xinjiang
下载PDF
Flysch Trace Fossils from the Hercynian and IndosinianOrogenic Belts of North western China andTheir Palaeoenvironmental Significance 被引量:6
4
作者 Gong Yiming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第4期384-394,495-499,共16页
Twenty-three ichnotaxa have been found in the Silurian and Carboniferous turbidites of the Tianshan orogenic belt and the Triassic turbidites of the East Kunlun-West Qinling orogenic belt of northwestern China. They a... Twenty-three ichnotaxa have been found in the Silurian and Carboniferous turbidites of the Tianshan orogenic belt and the Triassic turbidites of the East Kunlun-West Qinling orogenic belt of northwestern China. They are Acanthorhaphe isp., ?Arthrophycus isp., Aulichnites parkerensis, Chondrites isp., C. intricatus, C. targionii, Cochlichnus anguineus, coprolite, Dendrotichnium haentzscheli, Helminthopsis isp., Helminthopsis abeli, H. hieroglyphica, H. cf. irregularis, Imbrichnus isp., Kunlunichnus qinghaiensis, Laevicyclus rotaeformis, Lophoctenium tianshanensis, Megagrapton isp., Micatuba verso?, Muensteria isp., Neonereites, Palaeophycus, and Zoophycos caudagalli, two of which, namely, Kunlunichnus qinghaiensis and Lophoctenium tianshanensis, are new ichnospecies. The described trace fossils can be grouped into five ichno-assemblages: the Aulichnites-Imbrichnus ichno-assemblage representing turbidity current deposits of a restricted anoxic deep-sea basin, the Lophoctenium ichno-assemblage showing the deep-sea or ocean environments relevant to a plate subduction, the Zoophycos-Helminthopsis ichnoassemblage representing the upper-middle turbidity fan deposits of a pelagic and hemipelagic environment, the Megagrapton-Chondrites ichno-assemblage representing the middle-lower turbidity fan deposits of an oceanic archipelago and the Kunlunichnus ichno-assemblage indicating bathyal turbidity current deposits. 展开更多
关键词 flysch trace fossils Silurian Carboniferous Triassic tianshan Mountains Kunlun Mountains orogenic belt northwestern China
下载PDF
Intra-continental deformation and tectonic evolution of the West Junggar Orogenic Belt,Central Asia:Evidence from remote sensing and structural geological analyses 被引量:6
5
作者 Wei-Cui Ding Ting-Dong Li +5 位作者 Xuan-Hua Chen Jian-Ping Chen Sheng-Lin Xu Yi-Ping Zhang Bing Li Qiang Yang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期651-663,共13页
The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,befor... The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,before and after the ocean–continental conversion in Late Paleozoic.The later on intracontinental deformation,characterized by the development of the NE-trending West Junggar sinistral strike-slip fault system(WJFS)since Late Carboniferous and Early Permian,and the NW-trending Chingiz-Junggar dextral strike-slip fault(CJF)in Mesozoic and Cenozoic,has an important significance for the tectonic evolution of the WJOB and the CAOB.In this paper,we conduct geometric and kinematic analyses of the WJOB,based on field geological survey and structural interpretation of remote sensing image data.Using some piercing points such as truncated plutons and anticlines,an average magnitude of^73 km for the left-lateral strike-slip is calculated for the Darabut Fault,a major fault of the WJFS.Some partial of the displacement should be accommodated by strike-slip fault-related folds developed during the strike-slip faulting.Circular and curved faults,asymmetrical folds,and irregular contribution of ultramafic bodies,implies potential opposite vertical rotation of the Miao’ergou and the Akebasitao batholiths,resulted from the sinistral strike-slipping along the Darabut Fault.Due to conjugate shearing set of the sinistral WJFS and the dextral CJF since Early Mesozoic,superimposed folds formed with N–S convergence in southwestern part of the WJOB. 展开更多
关键词 Remote sensing Structural analysis Strike-slip fault system Darabut fault west Junggar Central Asian orogenic belt
下载PDF
Late Paleozoic Element Migration and Accumulation under Intracontinental Sinistral Strike-slip Faulting in the West Junggar Orogenic Belt, NW China 被引量:2
6
作者 WANG Ye CHEN Xuanhua +5 位作者 NIE Lanshi DING Weicui WANG Xueqiu XU Shenglin MA Feizhou HAN Lele 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期2012-2030,共19页
The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-sl... The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-slip faulting,on the adjustment of geochemical element distribution,are still not clear.In this paper,we select the West Junggar Orogenic Belt(WJOB),NW China,as a case study to test the migration behavior of elements under tectonic dynamics.The WJOB is dominated by NE-trending large-scale sinistral strike-slip faults such as the Darabut Fault,the Mayile Fault,and the Baerluke Fault,which formed during the intracontinental adjustment under N-S compression during ocean-continental conversion in the Late Paleozoic.Geochemical maps of 13 elements,Al,W,Sn,Mo,Cu,Pb,Zn,As,Sb,Hg,Fe,Ni,and Au,are analyzed for the effects of faulting and folding on element distribution at the regional scale.The results show that the element distribution in the WJOB is controlled mainly by two mechanisms during tectonic deformation:first is the material transporting mechanism,where the movement of geological units is consistent with the direction of tectonic movement;second is the diffusion mechanism,especially by tectonic pressure dissolution driven by tectonic dynamics,where the migration of elements is approximately perpendicular or opposite to the direction of tectonic movement.We conclude that the adjustment of element distributions has been determined by the combined actions of transporting and diffusion mechanisms,and that the diffusion mechanism plays an important role in the formation of geochemical Au blocks in the WJOB. 展开更多
关键词 tectono-geochemistry strike-slip fault system element distribution GOLD west Junggar Central Asian orogenic belt
下载PDF
Geological Characteristics and Metallogenic Setting of Representative Magmatic Cu-Ni Deposits in the Tianshan-Xingmeng Orogenic Belt, Central Asia 被引量:1
7
作者 HAN Chunming XIAO Wenjiao +7 位作者 SU Benxun ZHANG Xiaohui WAN Bo SONG Dongfang ZHANG Zhiyong ZHANG Jien WANG Zhongmei XIE Mingcai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第5期1205-1218,共14页
A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains... A great number of magmatic Cu-Ni deposits(including Kalatongke in Xinjiang and Hongqiling in Jilin) are distributed over a distance of almost 3000 km across the Tianshan-Xingmeng Orogenic Belt, from Tianshan Mountains in Xinjiang in the west, to Jilin in eastern China in the east. These deposits were formed during a range of magmatic episodes from the Devonian to the Triassic. Significant magmatic Cu-Ni-Co-PGE deposits were formed from the Devonian period in the Nalati arc(e.g. Jingbulake Cu-Ni in Xinjiang), Carboniferous period in the Puerjin-Ertai arc(e.g. Kalatongke Cu-Ni-Co-PGE in Xinjiang), Carboniferous period in the Dananhu-Touquan arc(e.g. Huangshandong, Xiangshan and Tulaergen in estern Tianshan, Xinjiang) to Triassic period in the Hulan arc(e.g. Hongqiling Cu-Ni in Jilin). In addition to the overall tectonic, geologic and distribution of magmatic Cu-Ni deposits in the Tianshan-Xingmeng Orogenic Belt, the metallogenic setting, deposit geology and mineralization characteristics of each deposit mentioned above are summarized in this paper. Geochronologic data of Cu-Ni deposits indicate that, from west to east, the metallogenic ages in the Tianshan-Xingmeng Orogenic Belt changed with time, namely, from the Late Caledonian(~440 Ma), through the Late Hercynian(300-265 Ma) to the Late Indosinian(225-200 Ma). Such variation could reflect a gradual scissor type closure of the paleo Asian ocean between the Siberia Craton and the North China Craton from west to east. 展开更多
关键词 Geochronology MAGMATIC Cu-Ni-Co-PGE deposits tianshan-Xingmeng orogenic belt Central Asia
下载PDF
Rhenium-Osmium Isotope Constraints on the Origin of the Tianyu Cu-Ni Deposit in the East Tianshan Orogenic Belt, Xinjiang, NW China
8
作者 HAN Chunming XIAO Wenjiao +5 位作者 AO Songjian ZHANG Jien SONG Dongfang ZHANG Zhiyong SONG Shuaihua XIE Mingcai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期525-535,共11页
The Tianyu Cu-Ni sulfide deposit occurs in the north margin of the Central Tianshan Arc in East Tianshan orogenic belt, Xinjiang, NW China. The intrusions consist of gabbro, peridotite, and olivine pyroxenite. The per... The Tianyu Cu-Ni sulfide deposit occurs in the north margin of the Central Tianshan Arc in East Tianshan orogenic belt, Xinjiang, NW China. The intrusions consist of gabbro, peridotite, and olivine pyroxenite. The peridotite and pyroxenite are the main host rock for the Cu-Ni ores. Rhenium and osmium isotopic analyses of Ni-and Cu-bearing sulfide minerals from the deposit have been used to determine the source of osmium, and by inference, the sources of ore metals. Sulfide ore samples have Os and Re concentrations varying in the ranges 1.85 to 4.58 ppb and 93.56 to 146.00 ppb, respectively. An initial ^(187)Os/^(188)Os ratio ranges from 0.86 to 1.23 for the ores and the γOs values from 592 to 2227. Osmium isotopic data suggest that the Tianyu intrusion and associated Cu-Ni mineralization has derived from crustal-contaminated mantle melts. The intrusions early show island-arc geochemical signatures, which indicate that the Hulu mafic–ultramafic intrusions, along with the Cu-Ni deposit, formed as a result of subduction of oceanic crust in the Early Permian. 展开更多
关键词 rhenium-osmium isotope Cu-Ni deposit Tianyu intrusion East tianshan orogenic belt XinJIANG
下载PDF
Geochemical characterization of the metasedimentary rocks of the Yaounde Group within the southernmost North Equatorial tectonic belt:insights into geodynamic evolution
9
作者 Simon Pierre Mbola Ndzana Moise Christian Balla Ateba +8 位作者 Germain Marie Monespérance Mboudou Moussa Nsangou Ngapna Jean Paul Sep Nlongang Solange Ipan Moise Bessong Jean Bosco Olinga Joseph Mvondo Ondoa Sébastien Owona Paul Bilong 《Acta Geochimica》 EI CAS CSCD 2023年第6期1017-1034,共18页
The Proterozoic metasedimentary rocks of the Yaounde Group on the northern edge of the Congo Shield in Central Africa were investigated to understand their provenance and depositional environment.Petrography,geochemis... The Proterozoic metasedimentary rocks of the Yaounde Group on the northern edge of the Congo Shield in Central Africa were investigated to understand their provenance and depositional environment.Petrography,geochemistry,and field evidence helped to subdivide the metasediments into paragneiss,mica schist,chlorite schist,and quartzite which were derived from greywacke,shale,quartz arenite,litharenite protoliths.They are immature with some mature samples,moderately weathered and reworked Neo-and Post-Archean metasediments.Rare earth element signatures(Chondrite Eu/Eu^(*)≤1),enrichment of light rare earth elements over the heavy ones,and the La/Sc ratio(>0.7)are compatible with those of the intermediate and felsic sources from the upper continental crust.These metasediments were deposited in the continental arc setting and have evolved during Proterozoic times according to the Wilson cycle to form the West Gondwana including NE Brazil. 展开更多
关键词 west Gondwana North Equatorial orogenic belt Yaounde Group Neoproterozoic basin Geochemistry of metasedimentary rocks Geodynamic evolution
下载PDF
A Large-Scale Palaeozoic Dextral Ductile Strike-Slip Zone:the Aqqikkudug-Weiya Zone along the Northern Margin of the Central Tianshan Belt,Xinjiang,NW China 被引量:39
10
作者 CHARVET Jacques 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第2期148-162,共15页
Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the ... Abstract The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by “flower” strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269±5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins. 展开更多
关键词 ductile thrusting dextral strike-slipping kinematic analysis Aqqikkudug-Weiya zone tianshan Palaeozoic orogenic belt
下载PDF
Geochronology and geochemistry of Late Carboniferous dykes in the Aqishan-Yamansu belt,eastern Tianshan:Evidence for a post-collisional slab breakoff 被引量:7
11
作者 Xiaoping Long Bin Wu +3 位作者 Min Sun Chao Yuan Wenjiao Xiao Rui Zuo 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第1期347-362,共16页
With aim of providing constraints on the Late Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt(CAOB),an integrated study was conducted on the geochronological and geochemical data for dioritic,... With aim of providing constraints on the Late Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt(CAOB),an integrated study was conducted on the geochronological and geochemical data for dioritic,granitic and diabase dykes from the Aqishan-Yamansu belt in the eastern Tianshan,NW China.Zircon U-Pb dating indicates that the dioritic and granitic dykes were both emplaced in the Late Carboniferous(~311 Ma and^315 Ma).The dioritic dykes show adakitic characteristics and have high Na2 O and positiveεHf(t)values(+12 to+17),which suggest an origin from partial melts of a subducted oceanic slab.The granitic dykes have high SiO2 and K2 O contents and are characterized by en riched light rare earth elements(LREE)and slightly flat heavy rare earth elements(HREE),with negative Eu and Nb-Ta-Ti anomalies.These dykes are alkali-calcic and show geochemical features of highly fractionated Itype granites.Their positiveεHf(t)values(+16 to+17)suggest that they were derived from a juvenile accreted oceanic crustal sou rce.The coeval diabase dykes have low SiO2 and K2 O contents but high TiO2,MgO and Mg#(54-59).They are enriched in LREE and show characteristics of enriched mid-ocean ridge basalts(E-MORB).The relatively high Ba/Th,slightly low Th/Ta ratios,and negative Nb-Ta anomalies imply a mantle source metasomatised by slab-derived fluids.Thus,these basic dykes were generated likely by partial melting of the upwelling asthenosphere mantle with a slight influence of slab-derived fluids.Therefore,we suggest that the formation of these Late Carboniferous dykes were triggered by a post-collisional slab breakoff and the Aqishan-Yamansu belt was a continental arc formed by southdipping subduction of the Kangguer oceanic plate. 展开更多
关键词 Central Asian orogenic belt Eastern tianshan Adakitic Highly fractionated l-Type granite Slab breakoff
下载PDF
Sodium-rich volcanic rocks and their relationships with iron deposits in the Aqishan-Yamansu belt of Eastern Tianshan,NW China 被引量:2
12
作者 Zhiyuan Sun WangJingbin +5 位作者 Yuwang Wang Lingli Long Zhaohua Luo Xiaohua Deng Qitao Hu Menglong Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第2期697-713,共17页
The volcanic rocks hosting the iron deposits in the Aqishan–Yamansu metallogenic belt are sodium-rich.The geochronology,petrography,and geochemistry of minerals and sodium-rich rocks as well as the relationship betwe... The volcanic rocks hosting the iron deposits in the Aqishan–Yamansu metallogenic belt are sodium-rich.The geochronology,petrography,and geochemistry of minerals and sodium-rich rocks as well as the relationship between these rocks and the iron deposits are studied.Geochemically,the ore-hosting volcanic rocks are sodiumrich(the averages of Na2O and Na2O/K2O are 4.31 wt.%and 8.56,respectively)and belong to the calc-alkaline series.They are enriched in LREEs and LILEs(Ba,U,K,and Sr),but depleted in HFSEs(Nb,Ta,and Ti).SHRIMP zircon U–Pb dating of the crystal tuff in the Aqishan Formation and the dacite in the Tugutu Bulak Formation yields ages of 337.52.3 Ma(n?15,MSWD?0.85)and 313.03.3 Ma(n?13,MSWD?0.74),respectively,indicating that the sodium-rich volcanic rocks formed from the early–late Carboniferous.Electron microprobe data from plagioclases demonstrate that albites and/or oligoclases were formed in the basic–intermediate–acid volcanic rocks.Two stages of albitization are identified,and the latter is likely attributed to the dissolution of iron in the Aqishan–Yamansu belt.The sodium-rich volcanic rocks probably formed by the interaction between volcanic lava and seawater after volcanoes erupted on the seafloor;meanwhile,the albites formed by element substitution in a low-metamorphic environment.The spatiotemporal coupling relationship between sodium-rich volcanic rocks and iron deposits in the Aqishan–Yamansu belt is favorable.Iron dissolved from the dark minerals of basic–intermediate volcanic rocks through sodium metasomatism is one of the material sources for the iron deposits. 展开更多
关键词 Sodium-rich volcanic rock GEOCHRONOLOGY Rock geochemistry Yamansu metallogenic belt Eastern tianshan orogenic belt
下载PDF
Detrital zircon constraints on late Paleozoic tectonism of the Bogda region(NW China)in the southern Central Asian Orogenic Belt 被引量:1
13
作者 Qian Wang Guochun Zhao +1 位作者 Yigui Han Jinlong Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第5期1533-1548,共16页
The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses... The Chinese North Tianshan(CNTS)in the southern part of the Central Asian Orogenic Belt(CAOB)has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519)from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%)lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed"Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon EHf(t)values have increased since^408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zirconεHf(t)values at^300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous. 展开更多
关键词 North tianshan Detrital zircon Sedimentary provenance Late Paleozoic Central Asian orogenic belt
下载PDF
GRANITOIDS AND TETONIC EVOLUTION OF THE WEST KUNLUN OROGENIC BELT
14
作者 Wang Yuanlong 1,Bi Hua 2, Wang Zhonggang 2, Zhu Xiaoqing 2 (1.Institute of Geology And Geophysics, Chinese Academy of Science, Beijing 100029,China 2 Institute of Geochemistry, Chinese Academy of Science, Guiyang 550002,China) 《地学前缘》 EI CAS CSCD 2000年第S1期228-229,共2页
The West Kunlun orogenic belt, one of the least studied areas in China, is located at the junction between the Qinghai—Tibetan Plateau and Tarim Basin and has undergone intense tectonic action and frequent magmatism.... The West Kunlun orogenic belt, one of the least studied areas in China, is located at the junction between the Qinghai—Tibetan Plateau and Tarim Basin and has undergone intense tectonic action and frequent magmatism.The West Kunlun orogenic belt can be divided into five tectonic\|magmatic evolution stages according to the character of the igneous rocks, metamorphic rocks, sedimentation mode, tectonic phases and isotopic ages(Fig 1).Active stages have dominated with only short intervening stable stages. This kind of evolution is not simply repeated but that a later stage is elevation and development of its former stage.Space\|time distribution of granitoids varies with each different tectonic\| magmatic stage as well as within different periods of the same tectonic\| magmatism stage. Take time into condition , It is an important turning movement of tectonics\|magmatism evolution during the Indo\|Sinian movement, as space the middle fault (Jiang Chunfa 1982) of the West Kunlun orogenic belt is a significant border o f tectonics\|magmatism evolution. Granitoids formed before Indo\|Sinian movement are mainly distributed to the north of the middle fault of West Kunlun. These granitoids are mostly granites of early and middle Proterozoic, Caledonian and Hercynian ages. A unique control on the granitoid evolution is that they become younger from NE to SW, crossing the regional structure line. Granitoids formed after Indo\|Sinian movement are mainly distributed to the south of the middle fault. But distribution of granitoids of early Yanshan cycle cut across the middle fault of West Kunlun Mountain. Their age distribution shows a bidirectional control with the granitoids becoming younger across the regional structural lines from NE and SW boundary fault to the interior of the fracture belts. 展开更多
关键词 the west KUNLUN orogenic belt tectonic\|magmatic EVOLUTION gr anitoids
下载PDF
First Report of Zircon U-Pb Ages from Lubei Cu-Ni Sulfide Deposit in East Tianshan of Central Asian Orogenic Belt, NW China 被引量:3
15
作者 LI Ping ZHAO Tongyang +2 位作者 ZHU Zhixin TIAN Jiangtao LI Dahai 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第2期855-856,共2页
Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Hu... Objective The East Tianshan mafic-ultramafic rocks belt mainly produced in the eastern Jueluotage belt is an important part of the Central Asia Orogenic Belt (CAOB). The well- known deposits including Huangshan, Huangshandong, Tulaergen, Hulu, Xiangshan were have been consecutively discovered in this belt (Duan Xingxing et al., 2016). The new discovery of the Lubei Cu-Ni sulfide deposit in recent years, which locates in the west of Jueluotage belt, has great significance to the westward extension of the East Tianshan Cu-Ni metallogenic belt. To determine whether the mineralization age of the Lubei Cu-Ni sulfide deposit is consistent with other typical deposits, this study conducted zircon U-Pb geochronology on the diorite from the Lubei Cu-Ni sulfide deposit in order to provide new information for further exploring direction of Cu-Ni prospecting in East Tianshan. 展开更多
关键词 PB First Report of Zircon U-Pb Ages from Lubei Cu-Ni Sulfide Deposit in East tianshan of Central Asian orogenic belt NW China Cu NI
下载PDF
Geochronology, geochemistry, and Sr-Nd isotopes of Early Carboniferous magmatism in southern West Junggar, northwestern China: Implications for Junggar oceanic plate subduction 被引量:1
16
作者 LIU Pengde LIU Xijun +6 位作者 XIAO Wenjiao ZHANG Zhiguo SONG Yujia XIAO Yao LIU Lei HU Rongguo WANG Baohua 《Journal of Arid Land》 SCIE CSCD 2021年第11期1163-1182,共20页
West Junggar is a key area for understanding intra-oceanic plate subduction and the final closure of the Junggar Ocean.Knowledge of the Carboniferous tectonic evolution of the Junggar Ocean region is required for unde... West Junggar is a key area for understanding intra-oceanic plate subduction and the final closure of the Junggar Ocean.Knowledge of the Carboniferous tectonic evolution of the Junggar Ocean region is required for understanding the tectonic framework and accretionary processes in West Junggar,Central Asian Orogenic Belt.A series of Early Carboniferous volcanic and intrusive rocks,namely,basaltic andesite,andesite,dacite,and diorite,occur in the Mayile area of southern West Junggar,northwestern China.Our new LA-ICPMS zircon U-Pb geochronological data reveal that diorite intruded at 334(±1)Ma,and that basaltic andesite was erupted at 334(±4)Ma.These intrusive and volcanic rocks are calc-alkaline,display moderate MgO(1.62%-4.18%)contents and Mg#values(40-59),and low Cr(14.5×10-6-47.2×10-6)and Ni(7.5×10-6-34.6×10-6)contents,and are characterized by enrichment in light rare-earth elements and large-ion lithophile elements and depletion in heavy rare-earth elements and high-field-strength elements,meaning that they belong to typical subduction-zone island-arc magma.The samples show low initial 87Sr/86Sr ratios(range of 0.703649-0.705008),positiveεNd(t)values(range of 4.8-6.2 and mean of 5.4),and young TDM Nd model ages ranging from 1016 to 616 Ma,indicating a magmatic origin from depleted mantle involving partial melting of 10%-25%garnet and spinel lherzolite.Combining our results with those of previous studies,we suggest that these rocks were formed as a result of northwestward subduction of the Junggar oceanic plate,which caused partial melting of sub-arc mantle.We conclude that intra-oceanic arc magmatism was extensive in West Junggar during the Early Carboniferous. 展开更多
关键词 Early Carboniferous magmatism GEOCHRONOLOGY GEOCHEMISTRY Junggar Oceanic plate subdution west Junggar Central Asian orogenic belt
下载PDF
Late Permian to Triassic intraplate orogeny of the southern Tianshan and adjacent regions, NW China 被引量:2
17
作者 Wei Ju Guiting Hou 《Geoscience Frontiers》 SCIE CAS CSCD 2014年第1期83-93,共11页
The South Tianshan Orogen and adjacent regions of Central Asia are located in the southwestern part of the Central Asian Orogenic Belt. The formation of South Tianshan Orogen was a diachronous, scissors-like process, ... The South Tianshan Orogen and adjacent regions of Central Asia are located in the southwestern part of the Central Asian Orogenic Belt. The formation of South Tianshan Orogen was a diachronous, scissors-like process, which took place during the Palaeozoic, and its western segment was accepted as a site of the final collision between the Tarim Craton and the North Asian continent, which occurred in the late Palaeozoic. However, the post-collisional tectonic evolution of the South Tianshan Orogen and adjacent regions remains debatable. Based on previous studies and recent geochronogical data, we suggest that the final collision between the Tarim Craton and the North Asian continent occurred during the late Carboniferous. Therefore, the Permian was a period of intracontinental environment in the southern Tianshan and adjacent regions. We propose that an earlier, small-scale intraplate orogenic stage occurred in late Permian to Triassic time, which was the first intraplate process in the South Tianshan Orogen and adjacent regions. The later large- scale and well-known Neogene to Quaternary intraplate orogeny was induced by the collision between the India subcontinent and the Eurasian plate. The paper presents a new evolutionary model for the South Tianshan Orogen and adjacent regions, which includes seven stages: (I) late Ordovician-early Silurian opening of the South Tianshan Ocean; (11) middle Silurian-middle Devonian subduction of the South Tianshan Ocean beneath an active margin of the North Asian continent; (111) late Devonian-late Carboniferous closure of the South Tianshan Ocean and collision between the Kazakhstan-Yili and Tarirn continental blocks; (IV) early Permian post-collisional magmatism and rifting; (V) late Permian-Triassic the first intraplate orogeny; (Vt) Jurassic-Palaeogene tectonic stagnation and (VII) Neocene-Quaternary intraplate orogeny. 展开更多
关键词 Central Asian orogenic belt Northern Xinjiang South tianshan Ocean Tectonics Tarim-North Asia collision
下载PDF
The Tectonic Implications of the Hongliuhe-Xichangjing Ophiolitic Mélanges Belt in the Central Region of the Beishan Orogen, NW China——Constrained by the U-Pb Ages of Detrital Zircons of the Metasandstones 被引量:1
18
作者 TIAN Jian XIN Houtian +4 位作者 TENG Xuejian DUAN Xiaolong CHENG Xianyu ZHANG Yong REN Bangfang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第4期1256-1275,共20页
The tectonic attributes of different blocks within orogenic belts are of great significance for the study of accretionary processes and the evolution of Earth. The Hongliuhe-Niujianzi-Baiyunshan-Xichangjing ophiolitic... The tectonic attributes of different blocks within orogenic belts are of great significance for the study of accretionary processes and the evolution of Earth. The Hongliuhe-Niujianzi-Baiyunshan-Xichangjing ophiolitic mélange belt(HXOMB) is distributed in the heart of the Beishan Orogen, the Shuangyingshan and Minshui-Hanshan blocks being distributed in the south and north of the HXOMB respectively, and a large number of Early Paleozoic geological units are exposed on the blocks. According to the zircon age populations of the metasandstones in the Baiyunshan area recovered in this paper, when compared with the zircon age populations of the Paleozoic metasandstones reported in the Niujuanzi and Hanshan areas, we found that the metasandstones of the Shuangyingshan Block have age peaks at c. 598 Ma, 742 Ma, 828 Ma, 941 Ma, 990 Ma, 1168 Ma, 1636 Ma, 2497 Ma with non-significant age populations of 1500–1300 Ma, showing a possible affinity with the Tarim Craton;the metasandstones of the Minshui-Hanshan Block have age peaks at c. 606 Ma, 758 Ma, 914 Ma, 1102 Ma, 1194 Ma, 1304 Ma, 1672 Ma with significant age populations of 1500-1300 Ma, showing a possible affinity with the Chinese Central Tianshan Block. Therefore, the HXOMB of the Beishan Orogen is of great significance in plate segmentation, which separates the Tarim Craton in the south and the Chinese Central Tianshan Block in the north. Based on the evolutionary process of the Hongliuhe-Xichangjing ocean in the Beishan Orogen, we believe that break-up and convergence can be recognized as having occurred twice between the Chinese Central Tianshan Block and the Tarim Craton since the Mesoproterozoic in the Beishan area. This was related firstly to the break-up of the Columbia Supercontinent and the convergence of the Rodinia Supercontinent, mainly during the Middle Mesoproterozoic to Early Neoproterozoic, and secondly to the opening and closing of the Hongliuhe-Xichangjing ocean, mainly during the Early Paleozoic. 展开更多
关键词 U-Pb ages of detrital zircons metasandstones Beishan Orogen Hongliuhe-Xichangjing ophiolitic mélanges belt Tarim Craton Chinese Central tianshan Block
下载PDF
A-type granites induced by a breaking-off and delamination of the subducted Junggar oceanic plate,West Junggar,Northwest China 被引量:1
19
作者 Chu Wu Tao Hong +2 位作者 Xing-Wang Xu Cheng-Xi Wang Lian-Hui Dong 《China Geology》 CAS 2022年第3期457-474,共18页
The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq... The A-type granites with highly positiveε_(Nd)(t)values in the West Junggar,Central Asian Orogenic Belt(CAOB),have long been perceived as a group formed under the same tectonic and geodynamic setting,magmatic sourceq and petrogenetic model.Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate:the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc;whereas the Akebasitao and Miaoergou granites formed in the accretionary prism.Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes,zircon U-Pb ages and Hf-O isotopes data on these granites.The granites in the Baogutu continental arc and accretionary prism contain similar zirconε_(Hf)(t)values(+10.9 to+16.2)and bulk-rock geochemical characteristics(high SiO_(2)and K_(2)O contents,enriched LILEs(except Sr),depleted Sr,Ta and Ti,and negative anomalies in Ce and Eu).The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages(315-305 Ma)and moderate^(18)O enrichments(δ^(18)_(O_(zircon))=+6.41‰-+7.96‰);whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages(305-301 Ma)with higher^(18)O enrichments(δ^(18)_(O_(zircon))=+8.72‰-+9.89‰).The authors deduce that the elevated^(18)O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts.The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism.The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt(induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc).On the other hand,the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism,consisting of the low-temperature altered oceanic crust,juvenile oceanic sediments,and mantle basaltic melt.These granites could be related to the asthenosphere's counterflow and upwelling,caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting. 展开更多
关键词 A-type granite plutons Sr-Nd-Hf-O isotopes Breaking-off and delamination Subducted Junggar oceanic plate west Junggar Central Asian orogenic belt
下载PDF
Neoproterozoic I-type granites in the Central Tianshan Block (NW China):geochronology,geochemistry,and tectonic implications
20
作者 SONG Yujia LIU Xijun +7 位作者 XIAO Wenjiao ZHANG Zhiguo LIU Pengde XIAO Yao LI Rui WANG Baohua LIU Lei HU Rongguo 《Journal of Arid Land》 SCIE CSCD 2022年第1期82-101,共20页
The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is ... The Central Tianshan Block is one of numerous microcontinental blocks within the Central Asian Orogenic Belt(CAOB)that overlies Precambrian basement rocks.Constraining the evolution of these ancient basement rocks is central to understanding the accretionary and collisional tectonics of the CAOB,and their place within the Rodinia supercontinent.However,to date,the timing and tectonic settings in which the basement rocks in the Central Tianshan Block formed are poorly constrained,with only sparse geochemical and geochronological data from granitic rocks within the northern segment of the block.Here,we present a systematic study combining U-Pb geochronology,whole-rock geochemistry,and the Sr-Nd isotopic compositions of newly-identified granitic gneisses from the Bingdaban area of Central Tianshan Block.The analyzed samples yield a weighted mean Neoproterozoic 206Pb/238U ages of 975-911 Ma.These weakly-peraluminous granitic rocks show a common geochemical I-type granite affinity.The granitic gneisses are calc-alkaline and enriched in large ion lithophile elements(LILEs)and light rare earth elements(LREEs),but they are depleted in high field strength elements(HFSEs);these characteristics are similar to those of typical subduction-related magmatism.All samples show initial(^(87)Sr/^(86)Sr)(t)ratios between 0.705136 and 0.706745.Values forεNd(t)in the granitic gneisses are in the range from-5.7 to-1.2,which correspond to Nd model ages of 2.0-1.7 Ga,indicating a role for Mesoproterozoic to Paleoproterozoic rocks in the generation of the granitic protoliths.The documented geochemical features indicate that the protoliths for the gneisses have a similar petrogenesis and magmatic source,which may reflect partial melting of thickened crust with the addition of small amounts of mantle-derived material.The Central Tianshan Block probably constitute part of an exterior orogen that developed along the margin of the Rodinian supercontinent during the Early Neoproterozoic and underwent a transition from subduction to syn-collision compression at 975-911 Ma. 展开更多
关键词 Neoproterozoic I-type granites GEOCHRONOLOGY Central tianshan Block Rodinian supercontinent Central Asian orogenic belt(CAOB)
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部