According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15...According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.展开更多
This paper combines the least-square method and iteration method to get the fundamental matrix and develops a new evaluation function based on the epipolar geometry. During the iteration, with the evaluation function ...This paper combines the least-square method and iteration method to get the fundamental matrix and develops a new evaluation function based on the epipolar geometry. During the iteration, with the evaluation function as a measurment, the points which bring larger noise are deleted, and the points with smaller noise are retained, thus the precision of our method is increased. The experiment results indicate the new method is precise in calculation, stable in performance and resistant to noise.展开更多
When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focu...When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.展开更多
Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one...Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one degree of freedom(DOF), and the power absorption efficiency is not quite satisfactory. In this paper, a 3-DOF WEC is proposed and a simplified frequency-domain dynamic model of the WEC depending on the linear potential theory is conducted. The performances of three geometries of the oscillating body including the cone, the cylinder and the hemisphere have been compared, and the results show that the hemisphere is more suitable for the 3-DOF WEC.Subsequently, the relationship among the parameters of the hemisphere is established based on the equal natural frequencies of the heave and pitch(or roll) motions, and the results show that lowering the center of gravity leads to the better power absorption in the pitch(or roll) motion. In the end, the power matrixes of different sizes of the hemispheres under different irregular waves are obtained, which can give a size design reference for engineers.展开更多
In order to correctly evaluate the exploitable groundwater resottrce in regional complex, thick Quaternary unconsolidated sediments, the whole Quaternary unconsolidated sediments are considered as a unified hydrogeolo...In order to correctly evaluate the exploitable groundwater resottrce in regional complex, thick Quaternary unconsolidated sediments, the whole Quaternary unconsolidated sediments are considered as a unified hydrogeological unit and a 3-D unsteady groundwater flow numerical model is adopted. Meanwhile, with the consideration of the dynamic changes of the porosity, the hydraulic conductivity and the specific storage with the groundwater level dropping during the exploitation process, an improved composite element seepage matrix adjustment method is applied to solve the unsteady flow problem of free surface. In order to eva- luate the exploitable groundwater resource in Cangzhou, Hebei Province, the hydrogeological conceptual model of Cangzhou is generalized to establish, a 3-D variable parameter numerical model of Cangzhou. Based on the prediction of the present groundwater exploitation, and by adjusting the groundwater exploitation layout, the exploitable groundwater resource is predicted. The model enjoys features like good convergence, good stability and high precision.展开更多
The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of...The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.展开更多
This paper describes an efficient improvement of the multipole accelerated boundary element method for 3-D capacitance extraction. The overall relations between the positions of 2-D boundary elements are considered in...This paper describes an efficient improvement of the multipole accelerated boundary element method for 3-D capacitance extraction. The overall relations between the positions of 2-D boundary elements are considered instead of only the relations between the center-points of the elements, and a new method of cube partitioning is introduced. Numerical results are presented to demonstrate that the method is accurate and has nearly linear computational growth as O(n), where n is the number of panels/boundary elements. The proposed method is more accurate and much faster than Fastcap.展开更多
For violent sloshing,the flow field becomes complicated and 3-D effect is non-negligible.In addition to the excitation direction,the wave can also propagate perpendicular to the excitation direction.Due to the superpo...For violent sloshing,the flow field becomes complicated and 3-D effect is non-negligible.In addition to the excitation direction,the wave can also propagate perpendicular to the excitation direction.Due to the superposition of waves from different directions,the impact pressure imposed on the wall of the tank may increase.In this paper,our in-house solver MPSGPU-SJTU based on moving particle semi-implicit(MPS)method coupled with GPU techniques is employed for the liquid sloshing simulation,to study the factors leading to the 3-D effect.Firstly,a series of sloshing simulations are carried out to validate the reliability of present solver.Then,the sensitivity of 3-D effect against some parameters,such as excitation frequency,dimensions of the tank and filling ratio,is checked through numerical simulations.Time histories of pressure obtained by 2-D and 3-D simulations are compared to judge the occurrence of 3-D effect.It concludes that effects of those parameters are all significant.展开更多
文摘According to turbulent theory and characteristics of beam blank continuous casting, 3-D model to represent the flow of beam blank mould is established. The predicted results indicate that the exit obliquity of up 15°(+15°) should be adopted, which will benefit the floatation of non-metallic inclusion and purification of the molten steel. When the nozzle angle is 120°, the flow pattern is reasonable. Proper nozzle depth can be 200mm. Turbulent kinetic of meniscus can be reduced by adopting the square nozzle and suitable area of side outlet when casting speed increases. The results are consistent with those of water model experiment, so the model is exact and reasonable. The model can provide important information for design of SEN and defining of immersion depth.
基金Supported by the National Science Foundation(69275004)the France-China Advanced Research Program
文摘This paper combines the least-square method and iteration method to get the fundamental matrix and develops a new evaluation function based on the epipolar geometry. During the iteration, with the evaluation function as a measurment, the points which bring larger noise are deleted, and the points with smaller noise are retained, thus the precision of our method is increased. The experiment results indicate the new method is precise in calculation, stable in performance and resistant to noise.
基金supported by the National Natural Science Foundation of China(61960206009,61971037,31727901)the Natural Science Foundation of Chongqing+1 种基金China(2020jcyj-jq X0008)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area(ZD2020A0101)。
文摘When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.
基金financially supported by China Postdoctoral Science Foundation(Grant No.2017M611554)the National Natural Science Foundation of China(Grant No.51335007)
文摘Ocean wave energy converters(WECs) are obtaining more and more attentions in the world. So far, many types of converters have been invented. Oscillating body systems are a major class of WECs, which typically have one degree of freedom(DOF), and the power absorption efficiency is not quite satisfactory. In this paper, a 3-DOF WEC is proposed and a simplified frequency-domain dynamic model of the WEC depending on the linear potential theory is conducted. The performances of three geometries of the oscillating body including the cone, the cylinder and the hemisphere have been compared, and the results show that the hemisphere is more suitable for the 3-DOF WEC.Subsequently, the relationship among the parameters of the hemisphere is established based on the equal natural frequencies of the heave and pitch(or roll) motions, and the results show that lowering the center of gravity leads to the better power absorption in the pitch(or roll) motion. In the end, the power matrixes of different sizes of the hemispheres under different irregular waves are obtained, which can give a size design reference for engineers.
基金Project supported by the Major Research Project of Hebei Province(Grant No.CZCG2008008)
文摘In order to correctly evaluate the exploitable groundwater resottrce in regional complex, thick Quaternary unconsolidated sediments, the whole Quaternary unconsolidated sediments are considered as a unified hydrogeological unit and a 3-D unsteady groundwater flow numerical model is adopted. Meanwhile, with the consideration of the dynamic changes of the porosity, the hydraulic conductivity and the specific storage with the groundwater level dropping during the exploitation process, an improved composite element seepage matrix adjustment method is applied to solve the unsteady flow problem of free surface. In order to eva- luate the exploitable groundwater resource in Cangzhou, Hebei Province, the hydrogeological conceptual model of Cangzhou is generalized to establish, a 3-D variable parameter numerical model of Cangzhou. Based on the prediction of the present groundwater exploitation, and by adjusting the groundwater exploitation layout, the exploitable groundwater resource is predicted. The model enjoys features like good convergence, good stability and high precision.
文摘The seakeeping performance of a luxury cruise ship was evaluated during the concept design phase.By comparing numerical predictions based on 3-D linear potential flow theory in the frequency domain with the results of model tests, it was shown that the 3-D method predicted the seakeeping performance of the luxury cruise ship well.Based on the model, the seakeeping features of the luxury cruise ship were analyzed, and then the influence was seen of changes to the primary design parameters (center of gravity, inertial radius, etc.).Based on the results, suggestions were proposed to improve the choice of parameters for luxury cruise ships during the concept design phase.They should improve seakeeping performance.
文摘This paper describes an efficient improvement of the multipole accelerated boundary element method for 3-D capacitance extraction. The overall relations between the positions of 2-D boundary elements are considered instead of only the relations between the center-points of the elements, and a new method of cube partitioning is introduced. Numerical results are presented to demonstrate that the method is accurate and has nearly linear computational growth as O(n), where n is the number of panels/boundary elements. The proposed method is more accurate and much faster than Fastcap.
基金National Natural Science Foundation of China(Grant Nos.51909160,51879159)the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400)+1 种基金the Chang Jiang Scholars Program(Grant No.T2014099)the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(Grant No.2016-23/09).
文摘For violent sloshing,the flow field becomes complicated and 3-D effect is non-negligible.In addition to the excitation direction,the wave can also propagate perpendicular to the excitation direction.Due to the superposition of waves from different directions,the impact pressure imposed on the wall of the tank may increase.In this paper,our in-house solver MPSGPU-SJTU based on moving particle semi-implicit(MPS)method coupled with GPU techniques is employed for the liquid sloshing simulation,to study the factors leading to the 3-D effect.Firstly,a series of sloshing simulations are carried out to validate the reliability of present solver.Then,the sensitivity of 3-D effect against some parameters,such as excitation frequency,dimensions of the tank and filling ratio,is checked through numerical simulations.Time histories of pressure obtained by 2-D and 3-D simulations are compared to judge the occurrence of 3-D effect.It concludes that effects of those parameters are all significant.