期刊文献+
共找到660篇文章
< 1 2 33 >
每页显示 20 50 100
Effects of gravel on the water absorption characteristics and hydraulic parameters of stony soil
1
作者 MA Yan WANG Youqi +2 位作者 MA Chengfeng YUAN Cheng BAI Yiru 《Journal of Arid Land》 SCIE CSCD 2024年第7期895-909,共15页
The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different... The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas. 展开更多
关键词 stony soil gravel content water absorption characteristics hydraulic parameters one-dimensional horizontal soil column absorption experiment van Genuchten model eastern foothills of Helan Mountains
下载PDF
Application of HYDRUS-1D in understanding soil water movement at two typical sites in the North China Plain 被引量:1
2
作者 WANG Shi-qin SONG Xian-fang +1 位作者 WEI Shou-cai SHAO Jing-li 《Journal of Groundwater Science and Engineering》 2016年第1期1-11,共11页
Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, ... Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, soil water movement in the unsaturated zone plays an important role in the transformation from rainfall infiltration to groundwater. The soil water movement models were developed by using HYDRUS-1D software at two typical experimental sites in Cangzhou(CZ) and Hengshui(HS) with different soil, vegetation and similar climate conditions. As shown in the results, the comparison in precipitation infiltration features between the two sites is distinct. The soil water experiences strong evaporation after precipitation infiltration, which accounts for 63% of the total infiltration at the HS site where the soil is homogenous. It is this strong evaporation effect that leads to slight increase of soil water storage. At the CZ site, where the soil is heterogeneous, the evaporation effect exists from July to October of the simulation period. The total evaporation accounts for 33% of the total infiltration, and the evaporation rate is slow. At the end of the simulation period, the soil water storage increases and the water table decreases, indicating a strong storage capacity at this site. 展开更多
关键词 HYDRUS-1D software soil water movement Precipitation INFILTRATION EVAPOTRANSPIRATION Groundwater RECHARGE
下载PDF
Experimental study on the movement of oil spill under freeze-thaw action
3
作者 ZeLiang Ye JianGuo Lu +2 位作者 MingYi Zhang WanSheng Pei ShuTong Li 《Research in Cold and Arid Regions》 CSCD 2024年第3期111-120,共10页
Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In thi... Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils. 展开更多
关键词 Freeze-thaw action Oil movement soil temperature Unfrozen water content Model test
下载PDF
Effects of biochar on water movement characteristics in sandy soil under drip irrigation 被引量:9
4
作者 PU Shenghai LI Guangyong +5 位作者 TANG Guangmu ZHANG Yunshu XU Wanli LIPan FENG Guangping DING Feng 《Journal of Arid Land》 SCIE CSCD 2019年第5期740-753,共14页
Biochar addition can improve the physical and hydraulic characteristics of sandy soil.This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation.By ... Biochar addition can improve the physical and hydraulic characteristics of sandy soil.This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation.By indoor simulation experiments,the effects of biochar application at five levels(0%,1%,2%,4%and 6%)on the soil water retention curve,infiltration characteristics of drip irrigation and water distribution were tested and analyzed.The results showed that biochar addition rate was positively correlated with water holding capacity of sandy soil and soil available water.Within the same infiltration time,with an increasing amount of added biochar,the diffusion distance of the horizontal wetting front(HWF)tended to decrease,while the infiltration distance of vertical wetting front(VWF)initially declined and then rose.The features of wetted bodies changed from"broad-shallow"to"narrow-deep"type.The relationship between the transport distances of HWF and VWF and the infiltration time was described by a power function.At the same distance from the point source,the larger the amount of added biochar,the higher the soil water content.Biochar had a great influence on the water content of the layer with biochar(0–200 mm)and had some effects at 200–250 mm without biochar;but it had less influence on the soil water content deeper than 250 mm.For the application rate of biochar of 4%,most water was retained within 0–250 mm soil layer.However,when biochar application amount was high(6%),it would be helpful for water infiltration.During the improvement of sandy soil,biochar application rate of 4%in the plow layer had the best effect. 展开更多
关键词 BIOCHAR SANDY soil water HOLDING capacity water movement DRIP IRRIGATION
下载PDF
Effect of Polyacrylamide Application on Water and Nutrient Movements in Soils 被引量:1
5
作者 Minyoung Kim Inhong Song +4 位作者 Minkyeong Kim Seounghee Kim Youngjin Kim Younghun Choi Myungchul Seo 《Journal of Agricultural Chemistry and Environment》 2015年第3期76-81,共6页
An understanding of nutrient movement in soil is important for developing management strategies to minimize nutrient leaching and surface movement, thus improving nutrient uptake by plants, maintaining a sustainable s... An understanding of nutrient movement in soil is important for developing management strategies to minimize nutrient leaching and surface movement, thus improving nutrient uptake by plants, maintaining a sustainable soil system, and even protecting groundwater quality. Polyacrylamide (PAM) is known as one of soil conditioner that functions to stabilize soil structure, increase infiltration, and reduce surface runoff. This study assesses the effects of PAM on the vertical movement of soil-water and major/minor nutrients (NO3-N, NH3-N, T-N, PO4-P, T-P, K, Ca, Mg, and Fe) in soils. Saturated hydraulic conductivity (Ksat) increases with increasing PAM concen- trations up to 10 mg&middot;L-1 for sand and 20 mg&middot;L-1 for a mixture of sand and clay. Decreases in the loss of soluble nutrients, particularly NH3-N, PO4-P and T-P, are observed as PAM concentrations increase. In contrast, PAM concentration has no effect on nitrate and minor nutrient levels. These results indicate that the application of PAM may be a viable method for protecting water bodies from excessive nutrients and improving nutrient availability for plants. 展开更多
关键词 POLYACRYLAMIDE water and NUTRIENT movement BREAKTHROUGH Curve NaCl-Tracer soil Column Major & Minot NUTRIENTS
下载PDF
Critical effects on the photosynthetic efficiency and stem sap flow of poplar in the Yellow River Delta in response to soil water
6
作者 Changxi Wang Huanyong Liu +2 位作者 Jiangbao Xia Xianshuang Xing Shuyong Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第6期2485-2498,共14页
To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method... To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method,and a CIRAS-2 portable photosynthesis system were used.The results show that photosynthetic rates(P_(n)),transpiration rates(T_(r)),instantaneous water use efficiency(WUE)and the stem sap flow increased initially and then decreased with decreasing soil water,but their critical values were different.The turning point of relative soil water content(W_(r))from stomatal limitation to nonstomatal limitation of P_(n)was 42%,and the water compensation point of P_(n)was 13%.Water saturation points of P_(n)and T_(r)were 64%and 56%,respectively,and the WUE was 71%.With increasing soil water,the apparent quantum yield(AQY),light saturation point(LSP)and maximum net photosynthetic rate(P_(n)max)increased first and then decreased,while the light compensation point(LCP)decreased first and then increased.When W_(r)was 64%,LCP reached a lower value of 30.7µmol m^(-2)s^(-1),and AQY a higher value of 0.044,indicating that poplar had a strong ability to utilize weak light.When W_(r)was 74%,LSP reached its highest point at 1138.3µmol·m^(-2)s^(-1),indicating that poplar had the widest light ecological amplitude and the highest light utilization efficiency.Stem sap flow and daily sap flow reached the highest value(1679.7 g d^(-1))at W_(r)values of 56%and 64%,respectively,and then declined with increasing or decreasing W_(r),indicating that soil moisture significantly affected the transpiration water-consumption of poplar.Soil water was divided into six threshold grades by critical values to maintain photosynthetic efficiency at different levels,and a W_(r)of 64-71%was classified to be at the level of high productivity and high efficiency.In this range,poplar had high photosynthetic capacity and efficient physiological characteristics for water consumption.The saplings had characteristics of water tolerance and were not drought resistant.Full attention should be given to the soil water environment in the Yellow River Delta when planting Populus. 展开更多
关键词 Gas exchange parameters Sap flow soil moisture water use efficiency Yellow River Delta
下载PDF
Influence of water potential and soil type on conventional japonica super rice yield and soil enzyme activities 被引量:5
7
作者 ZHANG Jing WANG Hai-bin +6 位作者 LIU Juan CHEN Hao DU Yan-xiu LI Jun-zhou SUN Hong-zheng PENG Ting ZHAO Quan-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1044-1052,共9页
We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 ... We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 cm below the soil surface were established using alternate wetting and drying irrigation, and the soil water potential (0 to -25 kPa) was measured at 5, 10 and 15 cm. A 2-cm water layer was used as the control. We measured soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and rice yield. The results showed that the 0-5-cm water depth treatment significantly increased root antioxidant enzyme activities in loam soil compared with the control, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield did not differ from those of the control. The 0-10- and 0-15-cm water depth treatments also increased root antioxidant enzyme activities, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield decreased. In clay soil, the soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and yield did not change with the 0-5-cm water treatment, whereas the 0-10- and 0-15-cm water treatments improved these parameters. Therefore,the appropriate depths for soil water during the late growth period of rice with a 0 to -25 kPa water potential were 5 cm in loam and 15 cm in clay soil. 展开更多
关键词 RICE yield components soil type soil enzyme activity antioxidant enzyme activity chlorophyll fluorescence parameters water potential
下载PDF
An experimental study on the relationship between acoustic parameters and mechanical properties of frozen silty clay 被引量:5
8
作者 Xing Huang DongQing Li +1 位作者 Feng Ming JianHong Fang 《Research in Cold and Arid Regions》 CSCD 2013年第5期596-602,共7页
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to... To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength. 展开更多
关键词 artificially frozen soil frozen soil strength ultrasonic wave velocity critical water content dynamic elastic mechanical parameters
下载PDF
Tidal water exchanges can shape the phytoplankton community structure and reduce the risk of harmful cyanobacterial blooms in a semi-closed lake 被引量:2
9
作者 Wenxu ZHENG Renhui LI +7 位作者 Wenli QIN Binbin CHEN Min WANG Wanchun GUAN Xiaoling ZHANG Qiao YANG Min ZHAO Zengling MA 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第5期1868-1880,共13页
For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared wi... For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared with that of an adjacent closed lake in the Oujiang River mouth in Zhejiang,East China Sea,from June 29,2020 to June 14,2021.Results show that the dominant species,abundance,dominance,and diversity of the phytoplankton species between the two lakes were significantly different.In the closed lake,cyanobacteria were the dominant species during the study period.However.in the semi-closed lake,the diversification of the dominant species was greater,and some species of diatoms and green algae became dominant.The average phytoplankton abundance in the closed lake was 6 times of that in the semi-closed lake.The average dominance of cyanobacteria in the closed lake was 0.96,and those in the semi-closed lake and the Oujiang River were 0.51 and 0.22,respectively.Cyanobacterial blooms occurred throughout the study time in the closed lake but not in the semi-closed one.Furthermore,the species diversity richness of the phytoplankton in the semi-closed lake was higher than that of the closed one,and the phytoplankton community between the closed lake and semi-closed lake could be divided into distinctly different groups based on non-metic multidimensional scaling analysis(NMDS)and analysis of similarities(ANOSIM)analysis.The salinity of the water was significantly greater and the transparency significantly smaller in the semi-closed lake than those in the closed lake.Therefore,water exchange driven by local tidal movement increased salinity and decreased transparency of water,which consequently shaped the community structures of different phytoplankton and reduced the risk of a cyanobacterial bloom outbreak in the semi-closed lake. 展开更多
关键词 ESTUARY harmful cyanobacterial blooms phytoplankton community water exchange tidal movement environmental parameters
下载PDF
Use of Kostiakov’s Infiltration Model on Michael Okpara University of Agriculture, Umudike Soils, Southeastern, Nigeria 被引量:1
10
作者 Magnus U. Igboekwe Ruth U. Adindu 《Journal of Water Resource and Protection》 2014年第10期888-894,共7页
The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when desig... The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when designing irrigation projects, thereby saving time and cost of field measurement. Field measurements of infiltration were first made using a double ring infiltrometer. The test lasted for 180 mins in each location. Infiltration values ranged from 0.03 cm/min to 0.1 cm/min. The highest value was obtained in the Forest Block. Kostiakov’s infiltration model was then applied on the field data in order to determine the soils’ infiltration parameters and equations. The model empirical constants or parameters obtained were “m” and “n”. For “m” the values were: 0.53 for the soil of Forest Block, 0.42 for Poultry block, 0.50 for P.G. block, 0.41 for the soils of Staff School and Guest House. The corresponding “n” values were: 1.37, 1.12, 0.37, 1.79, and 1.38. Infiltration equations: 0.4It1.38, 0.4lt1.79, 0.42t1.12, and 0.53t1.37 were determined for the locations. These were used to simulate data which were evaluated by comparing them with the field data. The two data sets showed closed relationships. This implied that the model could be used to simulate water infiltration during irrigation projects in the farms of Michael Okpara University of Agriculture, Umudike. 展开更多
关键词 Kostiakov Model parameters INFILTRATION soil water IRRIGATION
下载PDF
Soil-water characteristics of Gaomiaozi bentonite by vapour equilibrium technique 被引量:2
11
作者 Wenjing Sun De'an Sun +1 位作者 Lei Fang Shiqing Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第1期48-54,共7页
Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states i... Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios. 展开更多
关键词 Gaomiaozi(GMZ) Ca-bentonite Vapour equilibrium technique soil-water retention curve(SWRC) Void ratio Degree of saturation Hydro-mechanical coupled parameter SWRC at constant void ratio
下载PDF
Assessment of possible impacts of climate change on the hydrological regimes of different regions in China 被引量:1
12
作者 Alfredo REDER Guido RIANNA +1 位作者 Renata VEZZOLI Paola MERCOGLIANO 《Advances in Climate Change Research》 SCIE CSCD 2016年第3期169-184,共16页
The aim of this work is to investigate the soil water budget across China by means of hydrological modeling under current and future climate conditions and to evaluate the sensitivity to soil parameters. For this purp... The aim of this work is to investigate the soil water budget across China by means of hydrological modeling under current and future climate conditions and to evaluate the sensitivity to soil parameters. For this purpose, observed precipitation and temperature data(1981-2010) and climate simulations(2021-2050, 2071-2100) at high resolution(about 14 km) on a large part of China are used as weather forcing. The simulated weather forcing has been bias corrected by means of the distribution derived quantile mapping method to eliminate the effects of systematic biases in current climate modeling on water cycle components. As hydrological models, two 1D models are tested: TERRA-ML and HELP. Concerning soil properties, two datasets, provided respectively by Food and Agriculture Organization and U.S. Department of Agriculture, are separately tested. The combination of two hydrological models, two soil parameter datasets and three weather forcing inputs(observations, raw and bias corrected climate simulations) results in ?ve different simulation chains.The study highlights how the choice of some approaches or soil parameterizations can affect the results both in absolute and in relative terms and how these differences could be highly related to weather forcing in inputs or investigated soil. The analyses point out a decrease in average water content in the shallower part of the soil with different extents according to climate zone, concentration scenario and soil/cover features.Moreover, the projected increase in temperature and then in evapotranspirative demand do not ever result in higher actual evapotranspiration values, due to the concurrent variations in precipitation patterns. 展开更多
关键词 water BALANCE models Model comparison BIAS correction HYDROLOGICAL IMPACTS soil parameters China
下载PDF
WATER AND SALT MOVEMENTS IN SIMULTANEOUS FLOOD-IRRIGATION AND WELL-DRAINAGE OPERATIONS 被引量:1
13
作者 戚隆溪 邱克俭 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第2期135-143,共9页
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of wat... This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination. 展开更多
关键词 water and salt movements solonchak soil reclamation irrigation-drainage method
下载PDF
Experimental study on unsaturated soil water diffusivity in different soils in Hebei Piedmont Plain 被引量:1
14
作者 GAO Ye-xin LIU Ji-chao +2 位作者 FENG Xin ZHANG Ying-ping ZHANG Bing 《Journal of Groundwater Science and Engineering》 2019年第2期165-172,共8页
Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological we... Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm^3/cm^3,λ approaches stability. When the volumetric water content is less than 0.35 cm^3/cm^3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function . 展开更多
关键词 Hebei PIEDMONT PLAIN soil water DIFFUSIVITY BOLTZMANN parameter VOLUMETRIC water content
下载PDF
Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology 被引量:1
15
作者 Houfa Wu Jianyun Zhang +4 位作者 Zhenxin Bao Guoqing Wang Wensheng Wang Yanqing Yang Jie Wang 《Engineering》 SCIE EI CAS CSCD 2023年第9期93-104,共12页
Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization... Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data. 展开更多
关键词 parameters estimation Ungauged catchments Regionalization scheme Machine learning algorithms soil and water assessment tool model
下载PDF
Water Quality Index of Waste Stabilisation Ponds and Downstream of Discharge Point
16
作者 Obenne Pearl Gopolang Moatlhodi Wise Letshwenyo 《Journal of Environmental Protection》 2019年第8期993-1005,共13页
Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of t... Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point. 展开更多
关键词 MICROBIOLOGICAL parameters Physiochemical parameters SODIUM Absorption Ratio soil Sampling Waste Stabilization PONDS water Quality Index
下载PDF
土壤冻融过程中的水热参数化方案研究进展
17
作者 侯雅 李伟平 左金清 《高原气象》 北大核心 2025年第1期1-15,共15页
冻土是陆地冰冻圈的重要组成部分,其冻融循环变化能够影响土壤结构、土壤水热传输以及土壤生物化学等过程,并通过陆-气相互作用影响局地甚至全球天气气候。因此,研究土壤冻融过程对冻土区人类生产生活和了解区域外天气气候变化具有重要... 冻土是陆地冰冻圈的重要组成部分,其冻融循环变化能够影响土壤结构、土壤水热传输以及土壤生物化学等过程,并通过陆-气相互作用影响局地甚至全球天气气候。因此,研究土壤冻融过程对冻土区人类生产生活和了解区域外天气气候变化具有重要的科学意义。本文回顾了土壤中的砾石、有机质对土壤冻融过程的影响及物理机制,总结了土壤冻融过程中水热参数化的相关研究成果,包括土壤导热率和水力学参数的计算、水热耦合方案以及冻融锋面计算方案等。相对于普通的矿物质土粒而言,砾石具有高导热率和低热容,有机质具有低导热率和高热容,他们对热量在土壤中的传输及土壤温度垂直分布有不同的影响。另外,砾石和有机质的存在改变了土壤孔隙度、土壤基质毛细作用与吸附作用,进而影响水分在土壤中的传输过程和垂直分布。已有研究表明:(1)当前大部分数值模式中土壤导热率采用Johansen方案及其派生方案进行计算,其中Balland-Arp方案考虑了砾石和有机质对土壤导热率的影响,该方案更好地刻画了土壤冻融过程中土壤导热率变化的连续性;综合考虑热-水-变形相互作用的导热率参数化方案可以较好地刻画土壤冻融过程中的水热耦合和土体冻胀的作用,对相变过程中土壤导热率变化特征的模拟更符合实际观测。(2)过冷水参数化方案刻画了土壤液态水在0℃以下存在的事实;相变温度方案描述了土壤相变温度低于0℃且不固定的事实;导水阻抗方案考虑了土壤冻结对土壤水分下渗的阻抗作用,改善了对冻土区水文过程的模拟效果。(3)土壤冻融过程伴随着水分的相变和能量的转化,水热耦合方案的发展能够较好地刻画土壤中热力-水文过程的协同变化特征,细化了对冻融过程中水分和能量相互作用的复杂物理机制的描述。(4)等温框架的数值模式通过模拟每层土壤中间深度的冻融过程代表该模式分层的整体特征,导致对冻融深度的严重高估或低估,尤其是对厚度较大的模式深层土壤,冻融锋面计算方案的提出和应用减小了这种模拟偏差。目前土壤冻融参数化方案的不足之处包括:绝大多数数值模式没有考虑土壤盐分导致土壤水的冰点降低这一事实;虽然大部分数值模式考虑了土壤有机质对土壤水、热传输的影响,但是模式中对土壤有机质含量及垂直分布的考虑与植被根系的生长状态脱节;模式模拟的土壤深度不足并且下边界通量为零的假定不符合实际情况。发展土壤溶质传输参数化方案以模拟盐分的分布、刻画植被根系生长过程和土壤有机质的分布特征、考虑深层土壤对浅层的热力学影响并完善数值模式中的下边界条件,这些是未来陆面模式改进土壤冻融过程模拟的可能方向。 展开更多
关键词 土壤冻融过程 参数化方案 土壤导热率 土壤水文参数 冻融锋 水热耦合
下载PDF
土-水特征曲线的动态效应试验及模型研究
18
作者 张高翔 刘艳 刘志强 《岩土力学》 北大核心 2025年第1期178-186,198,共10页
室内测量土-水特征曲线(soil-water characteristic curve,简称SWCC)往往需要很长的平衡时间,而实际土体的变化可能并不满足平衡时间要求。当时间尺度较小时,SWCC可能未达到平衡,此时如果仍采用平衡条件下土-水特征曲线来建立非饱和土... 室内测量土-水特征曲线(soil-water characteristic curve,简称SWCC)往往需要很长的平衡时间,而实际土体的变化可能并不满足平衡时间要求。当时间尺度较小时,SWCC可能未达到平衡,此时如果仍采用平衡条件下土-水特征曲线来建立非饱和土的方程,就会产生误差。为此,研究了在非平衡条件下土-水特征曲线的动态效应,基于现有理论给出了土-水特征曲线参数与饱和度变化率的关系,并利用动态参数建立了动态毛细滞回模型。自主设计SWCC快速测量装置,针对粗砂和细砂开展了不同饱和度变化率情况下的土-水特征曲线测定试验。试验研究表明:(1)土-水特征曲线参数具有明显的动态效应;(2)进气值和残余饱和度并非定值,随饱和度变化率的不同有所改变;(3)利用试验结果对模型进行了验证,动态模型的预测结果与试验结果吻合较好,说明了该模型的合理性。本研究为解决非饱和土变形、强度和渗流问题提供了更加贴合实际的理论基础。 展开更多
关键词 土-水特征曲线 吸力增量 水力参数 动态效应 滞回模型
下载PDF
Uncertainty analysis of hydrological model parameters based on the bootstrap method:A case study of the SWAT model applied to the Dongliao River Watershed,Jilin Province,Northeastern China 被引量:9
19
作者 ZHANG Zheng LU WenXi +2 位作者 CHU HaiBo CHENG WeiGuo ZHAO Ying 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第1期219-229,共11页
As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.Howeve... As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.However,in most cases,model parameters are only determined in a calibration scheme which fits the modeled data to observations,thus significant uncertainties exist in the model parameters.How to quantitatively evaluate the uncertainties in model parameters and the resulting uncertainty impacts on model simulations has always been a question which has attracted much attention.In this study,two methods based on the bootstrap method(specifically,the model-based bootstrap and block bootstrap)are used to analyze the parameter uncertainties in the case of the SWAT(Soil and Water Assessment Tool)model applied to a hydrological simulation of the Dongliao River Watershed.Then,the uncertainty ranges of five sensitivity parameters are obtained.The calculated variation coefficients and the variable parameter contributions show that,among the five parameters,ESCO and CN2 have relatively high uncertainties:the variation coefficients and contribution rates are 23.98 and 70%,14.43 and 18%,respectively.The three remaining parameters have relatively low uncertainties.We compare the two uncertainty ranges of parameters acquired by the two bootstrap methods,and find that the uncertainty ranges of parameters acquired by the block bootstrap are narrower than those acquired by the model-based bootstrap.Further analysis of the effects of parameter uncertainties on the model simulation reveals that the parameter uncertainties have great impacts on results of the model simulation,and in the model calibration stage 60%70%of runoff observations were within the corresponding 95%confidence interval.The uncertainty in the model simulation during the flood season(i.e.the wet period)is relatively higher than that during the dry season. 展开更多
关键词 parameters uncertainty analysis hydrological model BOOTSTRAP SWAT soil and water Assessment Tool)
原文传递
变化环境下渭河流域土壤水储量模拟及影响因素 被引量:1
20
作者 于坤霞 闫泽云 +4 位作者 李梦楠 李占斌 李鹏 赵阳 贾路 《水土保持学报》 CSCD 北大核心 2024年第3期150-158,共9页
[目的]随着气候变化和人类活动影响加剧,流域气候和下垫面条件发生改变,为准确模拟土壤水分变化过程并分析其影响因素对于地区的水资源管理和植被建设的重要意义。[方法]以黄土高原地区渭河流域为研究对象,基于ABCD水文模型,采用EFAST... [目的]随着气候变化和人类活动影响加剧,流域气候和下垫面条件发生改变,为准确模拟土壤水分变化过程并分析其影响因素对于地区的水资源管理和植被建设的重要意义。[方法]以黄土高原地区渭河流域为研究对象,基于ABCD水文模型,采用EFAST法分析模型参数敏感性,构建常参数和时变参数模型,比较不同参数模型的径流深和土壤水储量模拟精度,探讨气候变化和植被恢复对渭河流域土壤水储量变化的影响,明确土壤水储量变化的主导因素。[结果]土壤水层补给地下水的比例参数c最为敏感,地下水储放系数d、流域实际蒸散发量与土壤蓄水量之和的上限参数b次之,表征土壤完全饱和前径流的倾向性参数a最不敏感;与ABCD常参数模型相比,时变参数模型将率定期径流深模拟结果的NSE、KGE、R^(2)分别提高19%,10%,19%,验证期的NSE、KGE、R^(2)分别提高7%,7%,9%,时变参数模型显著改善径流深模拟效果;基于时变参数模型模拟的渭河流域土壤水储量与ERA5-Land 0—100 cm土层土壤水储量的相关关系最强,二者的变化过程基本相同;不同影响因素对渭河流域土壤水储量变化的影响程度由强到弱依次为潜在蒸散发>降水>NDVI。[结论]研究成果为该地区水资源规划和管理、植被建设提供科学依据,也为其他类似地区的土壤水储量研究提供参考。 展开更多
关键词 渭河流域 ABCD水文模型 时变参数 土壤水储量 影响因素
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部