The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different...The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.展开更多
Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, ...Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, soil water movement in the unsaturated zone plays an important role in the transformation from rainfall infiltration to groundwater. The soil water movement models were developed by using HYDRUS-1D software at two typical experimental sites in Cangzhou(CZ) and Hengshui(HS) with different soil, vegetation and similar climate conditions. As shown in the results, the comparison in precipitation infiltration features between the two sites is distinct. The soil water experiences strong evaporation after precipitation infiltration, which accounts for 63% of the total infiltration at the HS site where the soil is homogenous. It is this strong evaporation effect that leads to slight increase of soil water storage. At the CZ site, where the soil is heterogeneous, the evaporation effect exists from July to October of the simulation period. The total evaporation accounts for 33% of the total infiltration, and the evaporation rate is slow. At the end of the simulation period, the soil water storage increases and the water table decreases, indicating a strong storage capacity at this site.展开更多
Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In thi...Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.展开更多
Biochar addition can improve the physical and hydraulic characteristics of sandy soil.This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation.By ...Biochar addition can improve the physical and hydraulic characteristics of sandy soil.This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation.By indoor simulation experiments,the effects of biochar application at five levels(0%,1%,2%,4%and 6%)on the soil water retention curve,infiltration characteristics of drip irrigation and water distribution were tested and analyzed.The results showed that biochar addition rate was positively correlated with water holding capacity of sandy soil and soil available water.Within the same infiltration time,with an increasing amount of added biochar,the diffusion distance of the horizontal wetting front(HWF)tended to decrease,while the infiltration distance of vertical wetting front(VWF)initially declined and then rose.The features of wetted bodies changed from"broad-shallow"to"narrow-deep"type.The relationship between the transport distances of HWF and VWF and the infiltration time was described by a power function.At the same distance from the point source,the larger the amount of added biochar,the higher the soil water content.Biochar had a great influence on the water content of the layer with biochar(0–200 mm)and had some effects at 200–250 mm without biochar;but it had less influence on the soil water content deeper than 250 mm.For the application rate of biochar of 4%,most water was retained within 0–250 mm soil layer.However,when biochar application amount was high(6%),it would be helpful for water infiltration.During the improvement of sandy soil,biochar application rate of 4%in the plow layer had the best effect.展开更多
An understanding of nutrient movement in soil is important for developing management strategies to minimize nutrient leaching and surface movement, thus improving nutrient uptake by plants, maintaining a sustainable s...An understanding of nutrient movement in soil is important for developing management strategies to minimize nutrient leaching and surface movement, thus improving nutrient uptake by plants, maintaining a sustainable soil system, and even protecting groundwater quality. Polyacrylamide (PAM) is known as one of soil conditioner that functions to stabilize soil structure, increase infiltration, and reduce surface runoff. This study assesses the effects of PAM on the vertical movement of soil-water and major/minor nutrients (NO3-N, NH3-N, T-N, PO4-P, T-P, K, Ca, Mg, and Fe) in soils. Saturated hydraulic conductivity (Ksat) increases with increasing PAM concen- trations up to 10 mg·L-1 for sand and 20 mg·L-1 for a mixture of sand and clay. Decreases in the loss of soluble nutrients, particularly NH3-N, PO4-P and T-P, are observed as PAM concentrations increase. In contrast, PAM concentration has no effect on nitrate and minor nutrient levels. These results indicate that the application of PAM may be a viable method for protecting water bodies from excessive nutrients and improving nutrient availability for plants.展开更多
To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method...To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method,and a CIRAS-2 portable photosynthesis system were used.The results show that photosynthetic rates(P_(n)),transpiration rates(T_(r)),instantaneous water use efficiency(WUE)and the stem sap flow increased initially and then decreased with decreasing soil water,but their critical values were different.The turning point of relative soil water content(W_(r))from stomatal limitation to nonstomatal limitation of P_(n)was 42%,and the water compensation point of P_(n)was 13%.Water saturation points of P_(n)and T_(r)were 64%and 56%,respectively,and the WUE was 71%.With increasing soil water,the apparent quantum yield(AQY),light saturation point(LSP)and maximum net photosynthetic rate(P_(n)max)increased first and then decreased,while the light compensation point(LCP)decreased first and then increased.When W_(r)was 64%,LCP reached a lower value of 30.7µmol m^(-2)s^(-1),and AQY a higher value of 0.044,indicating that poplar had a strong ability to utilize weak light.When W_(r)was 74%,LSP reached its highest point at 1138.3µmol·m^(-2)s^(-1),indicating that poplar had the widest light ecological amplitude and the highest light utilization efficiency.Stem sap flow and daily sap flow reached the highest value(1679.7 g d^(-1))at W_(r)values of 56%and 64%,respectively,and then declined with increasing or decreasing W_(r),indicating that soil moisture significantly affected the transpiration water-consumption of poplar.Soil water was divided into six threshold grades by critical values to maintain photosynthetic efficiency at different levels,and a W_(r)of 64-71%was classified to be at the level of high productivity and high efficiency.In this range,poplar had high photosynthetic capacity and efficient physiological characteristics for water consumption.The saplings had characteristics of water tolerance and were not drought resistant.Full attention should be given to the soil water environment in the Yellow River Delta when planting Populus.展开更多
We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 ...We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 cm below the soil surface were established using alternate wetting and drying irrigation, and the soil water potential (0 to -25 kPa) was measured at 5, 10 and 15 cm. A 2-cm water layer was used as the control. We measured soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and rice yield. The results showed that the 0-5-cm water depth treatment significantly increased root antioxidant enzyme activities in loam soil compared with the control, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield did not differ from those of the control. The 0-10- and 0-15-cm water depth treatments also increased root antioxidant enzyme activities, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield decreased. In clay soil, the soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and yield did not change with the 0-5-cm water treatment, whereas the 0-10- and 0-15-cm water treatments improved these parameters. Therefore,the appropriate depths for soil water during the late growth period of rice with a 0 to -25 kPa water potential were 5 cm in loam and 15 cm in clay soil.展开更多
To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to...To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.展开更多
For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared wi...For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared with that of an adjacent closed lake in the Oujiang River mouth in Zhejiang,East China Sea,from June 29,2020 to June 14,2021.Results show that the dominant species,abundance,dominance,and diversity of the phytoplankton species between the two lakes were significantly different.In the closed lake,cyanobacteria were the dominant species during the study period.However.in the semi-closed lake,the diversification of the dominant species was greater,and some species of diatoms and green algae became dominant.The average phytoplankton abundance in the closed lake was 6 times of that in the semi-closed lake.The average dominance of cyanobacteria in the closed lake was 0.96,and those in the semi-closed lake and the Oujiang River were 0.51 and 0.22,respectively.Cyanobacterial blooms occurred throughout the study time in the closed lake but not in the semi-closed one.Furthermore,the species diversity richness of the phytoplankton in the semi-closed lake was higher than that of the closed one,and the phytoplankton community between the closed lake and semi-closed lake could be divided into distinctly different groups based on non-metic multidimensional scaling analysis(NMDS)and analysis of similarities(ANOSIM)analysis.The salinity of the water was significantly greater and the transparency significantly smaller in the semi-closed lake than those in the closed lake.Therefore,water exchange driven by local tidal movement increased salinity and decreased transparency of water,which consequently shaped the community structures of different phytoplankton and reduced the risk of a cyanobacterial bloom outbreak in the semi-closed lake.展开更多
The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when desig...The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when designing irrigation projects, thereby saving time and cost of field measurement. Field measurements of infiltration were first made using a double ring infiltrometer. The test lasted for 180 mins in each location. Infiltration values ranged from 0.03 cm/min to 0.1 cm/min. The highest value was obtained in the Forest Block. Kostiakov’s infiltration model was then applied on the field data in order to determine the soils’ infiltration parameters and equations. The model empirical constants or parameters obtained were “m” and “n”. For “m” the values were: 0.53 for the soil of Forest Block, 0.42 for Poultry block, 0.50 for P.G. block, 0.41 for the soils of Staff School and Guest House. The corresponding “n” values were: 1.37, 1.12, 0.37, 1.79, and 1.38. Infiltration equations: 0.4It1.38, 0.4lt1.79, 0.42t1.12, and 0.53t1.37 were determined for the locations. These were used to simulate data which were evaluated by comparing them with the field data. The two data sets showed closed relationships. This implied that the model could be used to simulate water infiltration during irrigation projects in the farms of Michael Okpara University of Agriculture, Umudike.展开更多
Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states i...Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.展开更多
The aim of this work is to investigate the soil water budget across China by means of hydrological modeling under current and future climate conditions and to evaluate the sensitivity to soil parameters. For this purp...The aim of this work is to investigate the soil water budget across China by means of hydrological modeling under current and future climate conditions and to evaluate the sensitivity to soil parameters. For this purpose, observed precipitation and temperature data(1981-2010) and climate simulations(2021-2050, 2071-2100) at high resolution(about 14 km) on a large part of China are used as weather forcing. The simulated weather forcing has been bias corrected by means of the distribution derived quantile mapping method to eliminate the effects of systematic biases in current climate modeling on water cycle components. As hydrological models, two 1D models are tested: TERRA-ML and HELP. Concerning soil properties, two datasets, provided respectively by Food and Agriculture Organization and U.S. Department of Agriculture, are separately tested. The combination of two hydrological models, two soil parameter datasets and three weather forcing inputs(observations, raw and bias corrected climate simulations) results in ?ve different simulation chains.The study highlights how the choice of some approaches or soil parameterizations can affect the results both in absolute and in relative terms and how these differences could be highly related to weather forcing in inputs or investigated soil. The analyses point out a decrease in average water content in the shallower part of the soil with different extents according to climate zone, concentration scenario and soil/cover features.Moreover, the projected increase in temperature and then in evapotranspirative demand do not ever result in higher actual evapotranspiration values, due to the concurrent variations in precipitation patterns.展开更多
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of wat...This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.展开更多
Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological we...Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm^3/cm^3,λ approaches stability. When the volumetric water content is less than 0.35 cm^3/cm^3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function .展开更多
Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization...Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data.展开更多
Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of t...Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.展开更多
As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.Howeve...As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.However,in most cases,model parameters are only determined in a calibration scheme which fits the modeled data to observations,thus significant uncertainties exist in the model parameters.How to quantitatively evaluate the uncertainties in model parameters and the resulting uncertainty impacts on model simulations has always been a question which has attracted much attention.In this study,two methods based on the bootstrap method(specifically,the model-based bootstrap and block bootstrap)are used to analyze the parameter uncertainties in the case of the SWAT(Soil and Water Assessment Tool)model applied to a hydrological simulation of the Dongliao River Watershed.Then,the uncertainty ranges of five sensitivity parameters are obtained.The calculated variation coefficients and the variable parameter contributions show that,among the five parameters,ESCO and CN2 have relatively high uncertainties:the variation coefficients and contribution rates are 23.98 and 70%,14.43 and 18%,respectively.The three remaining parameters have relatively low uncertainties.We compare the two uncertainty ranges of parameters acquired by the two bootstrap methods,and find that the uncertainty ranges of parameters acquired by the block bootstrap are narrower than those acquired by the model-based bootstrap.Further analysis of the effects of parameter uncertainties on the model simulation reveals that the parameter uncertainties have great impacts on results of the model simulation,and in the model calibration stage 60%70%of runoff observations were within the corresponding 95%confidence interval.The uncertainty in the model simulation during the flood season(i.e.the wet period)is relatively higher than that during the dry season.展开更多
基金funded by the National Natural Science Foundation of China(32360321)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2023AAC03046,2023AAC02018)the Ningxia Key Research and Development Project(2021BEG02011).
文摘The eastern foothills of the Helan Mountains in China are a typical mountainous region of soil and gravel,where gravel could affect the water movement process in the soil.This study focused on the effects of different gravel contents on the water absorption characteristics and hydraulic parameters of stony soil.The stony soil samples were collected from the eastern foothills of the Helan Mountains in April 2023 and used as the experimental materials to conduct a one-dimensional horizontal soil column absorption experiment.Six experimental groups with gravel contents of 0%,10%,20%,30%,40%,and 50%were established to determine the saturated hydraulic conductivity(K_(s)),saturated water content(θ_(s)),initial water content(θ_(i)),and retention water content(θ_(r)),and explore the changes in the wetting front depth and cumulative absorption volume during the absorption experiment.The Philip model was used to fit the soil absorption process and determine the soil water absorption rate.Then the length of the characteristic wetting front depth,shape coefficient,empirical parameter,inverse intake suction and soil water suction were derived from the van Genuchten model.Finally,the hydraulic parameters mentioned above were used to fit the soil water characteristic curves,unsaturated hydraulic conductivity(K_(θ))and specific water capacity(C(h)).The results showed that the wetting front depth and cumulative absorption volume of each treatment gradually decreased with increasing gravel content.Compared with control check treatment with gravel content of 0%,soil water absorption rates in the treatments with gravel contents of 10%,20%,30%,40%,and 50%decreased by 11.47%,17.97%,25.24%,29.83%,and 42.45%,respectively.As the gravel content increased,inverse intake suction gradually increased,and shape coefficient,K_(s),θ_(s),andθ_(r)gradually decreased.For the same soil water content,soil water suction and K_(θ)gradually decreased with increasing gravel content.At the same soil water suction,C(h)decreased with increasing gravel content,and the water use efficiency worsened.Overall,the water holding capacity,hydraulic conductivity,and water use efficiency of stony soil in the eastern foothills of the Helan Mountains decreased with increasing gravel content.This study could provide data support for improving soil water use efficiency in the eastern foothills of the Helan Mountains and other similar rocky mountainous areas.
基金financially supported by the 100-Talent Project of Chinese Academy of Sciencesthe Key Program of the National Natural Science Foundation of China (No.41471028)
文摘Recharge and discharge, such as rainfall infiltration and evapotranspiration in vertical direction, are major processes of water cycle in the shallow groundwater area of the North China Plain. During these processes, soil water movement in the unsaturated zone plays an important role in the transformation from rainfall infiltration to groundwater. The soil water movement models were developed by using HYDRUS-1D software at two typical experimental sites in Cangzhou(CZ) and Hengshui(HS) with different soil, vegetation and similar climate conditions. As shown in the results, the comparison in precipitation infiltration features between the two sites is distinct. The soil water experiences strong evaporation after precipitation infiltration, which accounts for 63% of the total infiltration at the HS site where the soil is homogenous. It is this strong evaporation effect that leads to slight increase of soil water storage. At the CZ site, where the soil is heterogeneous, the evaporation effect exists from July to October of the simulation period. The total evaporation accounts for 33% of the total infiltration, and the evaporation rate is slow. At the end of the simulation period, the soil water storage increases and the water table decreases, indicating a strong storage capacity at this site.
基金the Science and Technology program of Gansu Province(Grant No.23ZDFA017)the National Natural Science Foundation of China(Grant Nos.U21A2012,42101136)the Program for Top Leading Talents of Gansu Province(Granted to Dr.MingYi Zhang).
文摘Oil leakages cause environmental pollution,economic losses,and even engineering safety accidents.In cold regions,researchers urgently investigate the movement of oil spill in soils exposed to freeze-thaw cycles.In this study,a series of laboratory model experiments were carried out on the migration of oil leakage under freeze-thaw action,and the distributions of the soil temperature,unfrozen water content,and displacement were analyzed.The results showed that under freeze-thaw action,liquid water in soils migrated to the freezing front and accumulated.After the pipe cracked,oil pollutants first gathered at one side of the leak hole,and then moved around.The pipe wall temperature affected the soil temperature field,and the thermal influence range below and transverse the pipe wall(35–40 cm)was larger than that above the pipe wall(8 cm)owing to the soil surface temperature.The leaked oil's temperature would make the temperature of the surrounding soil rise.Oil would inhibit the cooling of the soils.Besides,oil migration was significantly affected by the gravity and water flow patterns.The freeze-thaw action would affect the migration of the oil,which was mainly manifested as inhibiting the diffusion and movement of oil when soils were frozen.Unfrozen water transport caused by freeze-thaw cycles would also inhibit oil migration.The research results would provide a scientific reference for understanding the relationship between the movement of oil pollutants,water,and soil temperature,and for establishing a waterheat-mass transport model in frozen soils.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(20130313006,201503136)the National Natural Science Foundation of China(31660073)+1 种基金the National Key Research and Development Program of China(2017YFD0200803-04,2018YFD0800804,2017YFD0201900)the Youth Foundation of Xinjiang Academy of Agricultural Sciences(xjnkq-2015002)
文摘Biochar addition can improve the physical and hydraulic characteristics of sandy soil.This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation.By indoor simulation experiments,the effects of biochar application at five levels(0%,1%,2%,4%and 6%)on the soil water retention curve,infiltration characteristics of drip irrigation and water distribution were tested and analyzed.The results showed that biochar addition rate was positively correlated with water holding capacity of sandy soil and soil available water.Within the same infiltration time,with an increasing amount of added biochar,the diffusion distance of the horizontal wetting front(HWF)tended to decrease,while the infiltration distance of vertical wetting front(VWF)initially declined and then rose.The features of wetted bodies changed from"broad-shallow"to"narrow-deep"type.The relationship between the transport distances of HWF and VWF and the infiltration time was described by a power function.At the same distance from the point source,the larger the amount of added biochar,the higher the soil water content.Biochar had a great influence on the water content of the layer with biochar(0–200 mm)and had some effects at 200–250 mm without biochar;but it had less influence on the soil water content deeper than 250 mm.For the application rate of biochar of 4%,most water was retained within 0–250 mm soil layer.However,when biochar application amount was high(6%),it would be helpful for water infiltration.During the improvement of sandy soil,biochar application rate of 4%in the plow layer had the best effect.
文摘An understanding of nutrient movement in soil is important for developing management strategies to minimize nutrient leaching and surface movement, thus improving nutrient uptake by plants, maintaining a sustainable soil system, and even protecting groundwater quality. Polyacrylamide (PAM) is known as one of soil conditioner that functions to stabilize soil structure, increase infiltration, and reduce surface runoff. This study assesses the effects of PAM on the vertical movement of soil-water and major/minor nutrients (NO3-N, NH3-N, T-N, PO4-P, T-P, K, Ca, Mg, and Fe) in soils. Saturated hydraulic conductivity (Ksat) increases with increasing PAM concen- trations up to 10 mg·L-1 for sand and 20 mg·L-1 for a mixture of sand and clay. Decreases in the loss of soluble nutrients, particularly NH3-N, PO4-P and T-P, are observed as PAM concentrations increase. In contrast, PAM concentration has no effect on nitrate and minor nutrient levels. These results indicate that the application of PAM may be a viable method for protecting water bodies from excessive nutrients and improving nutrient availability for plants.
基金This study was supported by the National Natural Science Foundation of China(No.31770761,No.31870379)the Forestry Science and Technology Innovation Project of Shandong Province(No.2019LY006)+1 种基金the Science and Technology Projects of Shandong Province(No.2017CXGC0316)the Taishan Scholars Program of Shandong Province,P.R.China(No.TSQN201909152).
文摘To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method,and a CIRAS-2 portable photosynthesis system were used.The results show that photosynthetic rates(P_(n)),transpiration rates(T_(r)),instantaneous water use efficiency(WUE)and the stem sap flow increased initially and then decreased with decreasing soil water,but their critical values were different.The turning point of relative soil water content(W_(r))from stomatal limitation to nonstomatal limitation of P_(n)was 42%,and the water compensation point of P_(n)was 13%.Water saturation points of P_(n)and T_(r)were 64%and 56%,respectively,and the WUE was 71%.With increasing soil water,the apparent quantum yield(AQY),light saturation point(LSP)and maximum net photosynthetic rate(P_(n)max)increased first and then decreased,while the light compensation point(LCP)decreased first and then increased.When W_(r)was 64%,LCP reached a lower value of 30.7µmol m^(-2)s^(-1),and AQY a higher value of 0.044,indicating that poplar had a strong ability to utilize weak light.When W_(r)was 74%,LSP reached its highest point at 1138.3µmol·m^(-2)s^(-1),indicating that poplar had the widest light ecological amplitude and the highest light utilization efficiency.Stem sap flow and daily sap flow reached the highest value(1679.7 g d^(-1))at W_(r)values of 56%and 64%,respectively,and then declined with increasing or decreasing W_(r),indicating that soil moisture significantly affected the transpiration water-consumption of poplar.Soil water was divided into six threshold grades by critical values to maintain photosynthetic efficiency at different levels,and a W_(r)of 64-71%was classified to be at the level of high productivity and high efficiency.In this range,poplar had high photosynthetic capacity and efficient physiological characteristics for water consumption.The saplings had characteristics of water tolerance and were not drought resistant.Full attention should be given to the soil water environment in the Yellow River Delta when planting Populus.
基金supported by the National Natural Science Foundation of China(31271651)the Major Science and Technology Project of Henan Province,China(141100110600)+1 种基金the Special Fund for Agro-scientific Research in the Public Interest of China(201303102)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province,China(94200510003)
文摘We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 cm below the soil surface were established using alternate wetting and drying irrigation, and the soil water potential (0 to -25 kPa) was measured at 5, 10 and 15 cm. A 2-cm water layer was used as the control. We measured soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and rice yield. The results showed that the 0-5-cm water depth treatment significantly increased root antioxidant enzyme activities in loam soil compared with the control, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield did not differ from those of the control. The 0-10- and 0-15-cm water depth treatments also increased root antioxidant enzyme activities, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield decreased. In clay soil, the soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and yield did not change with the 0-5-cm water treatment, whereas the 0-10- and 0-15-cm water treatments improved these parameters. Therefore,the appropriate depths for soil water during the late growth period of rice with a 0 to -25 kPa water potential were 5 cm in loam and 15 cm in clay soil.
基金supported by the National Natural Science Foundation of China (No.41271080 and No.41230630)the Western Project Program of the Chinese Academy of Sciences(KZCX2-XB3-19)the open fund of Qinghai Research and Observation Base, Key Laboratory of Highway Construction and Maintenance Technology in Permafrost Region Ministry of Transport, PRC (2012-12-4)
文摘To study the influence of temperature and water content on ultrasonic wave velocity and to establish the relationship between ultrasonic wave velocity and frozen silty clay strength, ultrasonic tests were conducted to frozen silty clay by using RSM-SY5(T) nonmetal supersonic test meter, and the tensile strength and compressive strength of silty clay were measured under various negative temperatures. Test and analysis results indicate that, ultrasonic wave velocity rapidly changes in the temperature range of-1 ℃ to -5 ℃. Ultrasonic wave velocity increased with an increase of water content until the water content reached the critical water content, while decreased with an increase of water content after the water content exceeded the critical water content. This study showed that there was strong positive correlation between the ul- trasonic wave velocity and the frozen soil strength. As ultrasonic wave velocity increased, either tensile strength or com- pressive strength increased. Based on the experimental data, the relationship between ultrasonic wave velocity and frozen silty clay strength was obtained through regression analysis. It was found that the ultrasonic test technique can be used to test frozen soils and lay the foundation for the determination of frozen soil strength.
基金Supported by the National Key R&D Program of China(No.2018YFE0103700)the National Natural Science Foundation(Nos.41876124,61871293,42007372)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ21C030001,LD21C030001,LQ20C030008)。
文摘For estuaries,inland lakes play a vital role in the ecological balance under the impact of tide s.The effect of tides-induced water exchange on phytoplankton community in a semi-closed lake was studied and compared with that of an adjacent closed lake in the Oujiang River mouth in Zhejiang,East China Sea,from June 29,2020 to June 14,2021.Results show that the dominant species,abundance,dominance,and diversity of the phytoplankton species between the two lakes were significantly different.In the closed lake,cyanobacteria were the dominant species during the study period.However.in the semi-closed lake,the diversification of the dominant species was greater,and some species of diatoms and green algae became dominant.The average phytoplankton abundance in the closed lake was 6 times of that in the semi-closed lake.The average dominance of cyanobacteria in the closed lake was 0.96,and those in the semi-closed lake and the Oujiang River were 0.51 and 0.22,respectively.Cyanobacterial blooms occurred throughout the study time in the closed lake but not in the semi-closed one.Furthermore,the species diversity richness of the phytoplankton in the semi-closed lake was higher than that of the closed one,and the phytoplankton community between the closed lake and semi-closed lake could be divided into distinctly different groups based on non-metic multidimensional scaling analysis(NMDS)and analysis of similarities(ANOSIM)analysis.The salinity of the water was significantly greater and the transparency significantly smaller in the semi-closed lake than those in the closed lake.Therefore,water exchange driven by local tidal movement increased salinity and decreased transparency of water,which consequently shaped the community structures of different phytoplankton and reduced the risk of a cyanobacterial bloom outbreak in the semi-closed lake.
文摘The main purpose of this study is to obtain the water infiltration parameters of the soils of Michael Okpara University of Agriculture, Umudike. This could be used in simulating infiltration for these soils when designing irrigation projects, thereby saving time and cost of field measurement. Field measurements of infiltration were first made using a double ring infiltrometer. The test lasted for 180 mins in each location. Infiltration values ranged from 0.03 cm/min to 0.1 cm/min. The highest value was obtained in the Forest Block. Kostiakov’s infiltration model was then applied on the field data in order to determine the soils’ infiltration parameters and equations. The model empirical constants or parameters obtained were “m” and “n”. For “m” the values were: 0.53 for the soil of Forest Block, 0.42 for Poultry block, 0.50 for P.G. block, 0.41 for the soils of Staff School and Guest House. The corresponding “n” values were: 1.37, 1.12, 0.37, 1.79, and 1.38. Infiltration equations: 0.4It1.38, 0.4lt1.79, 0.42t1.12, and 0.53t1.37 were determined for the locations. These were used to simulate data which were evaluated by comparing them with the field data. The two data sets showed closed relationships. This implied that the model could be used to simulate water infiltration during irrigation projects in the farms of Michael Okpara University of Agriculture, Umudike.
基金the National Natural Sciences Foundation of China (No. 41102163)
文摘Soil-water characteristics of Gaomiaozi(GMZ)Ca-bentonite at high suctions(3–287MPa)are measured by vapour equilibrium technique.The soil-water retention curve(SWRC)of samples with the same initial compaction states is obtained in drying and wetting process.At high suctions,the hysteresis behaviour is not obvious in relationship between water content and suction,while the opposite holds between degree of saturation and suction.The suction variation can change its water retention behaviour and void ratio.Moreover,changes of void ratio can bring about changes in degree of saturation.Therefore,the total change in degree of saturation includes changes caused by suction and that by void ratio.In the space of degree of saturation and suction,the SWRC at constant void ratio shifts to the direction of higher suctions with decreasing void ratio.However,the relationship between water content and suction is less affected by changes of void ratio.The degree of saturation decreases approximately linearly with increasing void ratio at a constant suction.Moreover,the slope of the line decreases with increasing suction and they show an approximately linear relationship in semi-logarithmical scale.From this linear relationship,the variation of degree of saturation caused by the change in void ratio can be obtained.Correspondingly,SWRC at a constant void ratio can be determined from SWRC at different void ratios.
基金the framework of the GEMINA project,Work Package 7.1.6,“B action”(Italye-China cooperation on climate changes),funded by the Italian Ministry of Education,University,and Research and the Italian Ministry of the Environment,Land,and Sea
文摘The aim of this work is to investigate the soil water budget across China by means of hydrological modeling under current and future climate conditions and to evaluate the sensitivity to soil parameters. For this purpose, observed precipitation and temperature data(1981-2010) and climate simulations(2021-2050, 2071-2100) at high resolution(about 14 km) on a large part of China are used as weather forcing. The simulated weather forcing has been bias corrected by means of the distribution derived quantile mapping method to eliminate the effects of systematic biases in current climate modeling on water cycle components. As hydrological models, two 1D models are tested: TERRA-ML and HELP. Concerning soil properties, two datasets, provided respectively by Food and Agriculture Organization and U.S. Department of Agriculture, are separately tested. The combination of two hydrological models, two soil parameter datasets and three weather forcing inputs(observations, raw and bias corrected climate simulations) results in ?ve different simulation chains.The study highlights how the choice of some approaches or soil parameterizations can affect the results both in absolute and in relative terms and how these differences could be highly related to weather forcing in inputs or investigated soil. The analyses point out a decrease in average water content in the shallower part of the soil with different extents according to climate zone, concentration scenario and soil/cover features.Moreover, the projected increase in temperature and then in evapotranspirative demand do not ever result in higher actual evapotranspiration values, due to the concurrent variations in precipitation patterns.
基金The project supported by the National Natural Science Foundation of China
文摘This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.
基金financially supported by the Fundamental Research Fund of the Chinese Academy of Geological Sciences (YYFM201624)
文摘Horizontal soil column method was used to determine the horizontal diffusion rate of sandy loam, loam and clay loam under the same bulk density. The results showed that the migration rates of different lithological wet fronts were different. The sandy loam had the fastest migration rate, the loam followed, and the clay loam was the slowest, but the law of change is the same among the three lithologies. The volumetric water content affects the change of Boltzmann parameter λ. When the volumetric water content is between 0.35-0.45 cm^3/cm^3,λ approaches stability. When the volumetric water content is less than 0.35 cm^3/cm^3, the λ value decreases rapidly with the decrease of water content. The water diffusion rate is related to the volumetric water content and particle size. The greater the moisture content is, the greater the diffusion rate will be. The larger the particle size, the larger the diffusion rate. The diffusivity of sandy loam is 10-30 times larger than that of loam and clay loam. The relationship between water content and diffusion rate is in accordance with the exponential function .
基金funded by the National Key Research and Development Program of China(2017YFA0605002,2017YFA0605004,and 2016YFA0601501)the National Natural Science Foundation of China(41961124007,51779145,and 41830863)“Six top talents”in Jiangsu Province(RJFW-031)。
文摘Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments.The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization,which is the most widely used approach.Runoff modeling was studied in 38 catchments located in the Yellow–Huai–Hai River Basin(YHHRB).The values of the Nash–Sutcliffe efficiency coefficient(NSE),coefficient of determination(R2),and percent bias(PBIAS)indicated the acceptable performance of the soil and water assessment tool(SWAT)model in the YHHRB.Nine descriptors belonging to the categories of climate,soil,vegetation,and topography were used to express the catchment characteristics related to the hydrological processes.The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models,including linear regression(LR)equations,support vector regression(SVR),random forest(RF),k-nearest neighbor(kNN),decision tree(DT),and radial basis function(RBF).Each of the 38 catchments was assumed to be an ungauged catchment in turn.Then,the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments.Furthermore,the similaritybased regionalization scheme was used for comparison with the regression-based approach.The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments.Compared with the traditional LR-based approach,the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships.The performances of different approaches were similar in humid regions,while the advantages of the machine learning techniques were more evident in arid regions.When the study area contained nested catchments,the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance.The new findings could improve flood forecasting and water resources planning in regions that lack observed data.
文摘Water quality index has been used in various researches for the assessment of water quality for various uses and discharges into the environment. The purpose of this study was to determine the water quality index of the effluent from waste stabilisation ponds and 400 m beyond discharge point. This was achieved by evaluating concentrations of seven parameters from soil, eleven physiochemical parameters from effluent and four microbiological parameters. Corresponding water quality indices calculated from microbiological parameters were 854, 142, 96 and 1539 respectively, at sites 1, 2, 3 and 4. Reductions of magnesium, zinc, lead, sodium adsorption ratio, sodium and electrical conductivity in soil samples at site 4 were 15.5%, 57%, 81.6%, 93.5%, 93.5% and 99% respectively. The percentage increases were 21.4% and 185% respectively, for calcium and iron ions. It can be concluded that the water quality index of the waste stabilisation ponds is unsuitable for discharge into the environment. However, the results revealed improved quality downstream of discharge point.
基金supported by the Major Science and Technology Program for Water Pollution and Treatment of China(Grant No.2012ZX07201-001)
文摘As an important tool for the description and analysis of hydrological processes,the watershed hydrological model has been increasingly applied to watershed hydrological simulations and water resource management.However,in most cases,model parameters are only determined in a calibration scheme which fits the modeled data to observations,thus significant uncertainties exist in the model parameters.How to quantitatively evaluate the uncertainties in model parameters and the resulting uncertainty impacts on model simulations has always been a question which has attracted much attention.In this study,two methods based on the bootstrap method(specifically,the model-based bootstrap and block bootstrap)are used to analyze the parameter uncertainties in the case of the SWAT(Soil and Water Assessment Tool)model applied to a hydrological simulation of the Dongliao River Watershed.Then,the uncertainty ranges of five sensitivity parameters are obtained.The calculated variation coefficients and the variable parameter contributions show that,among the five parameters,ESCO and CN2 have relatively high uncertainties:the variation coefficients and contribution rates are 23.98 and 70%,14.43 and 18%,respectively.The three remaining parameters have relatively low uncertainties.We compare the two uncertainty ranges of parameters acquired by the two bootstrap methods,and find that the uncertainty ranges of parameters acquired by the block bootstrap are narrower than those acquired by the model-based bootstrap.Further analysis of the effects of parameter uncertainties on the model simulation reveals that the parameter uncertainties have great impacts on results of the model simulation,and in the model calibration stage 60%70%of runoff observations were within the corresponding 95%confidence interval.The uncertainty in the model simulation during the flood season(i.e.the wet period)is relatively higher than that during the dry season.