This paper considers the dividend problems in the perturbed compound Poisson risk model.Assume that dividends can only be paid at the observation time when the surplus exceeds the barrier level and the excess is paid ...This paper considers the dividend problems in the perturbed compound Poisson risk model.Assume that dividends can only be paid at the observation time when the surplus exceeds the barrier level and the excess is paid as dividend.In this paper,integro-differential equations for the expected discounted dividends until ruin and the Laplace transform of ruin time are firstly derived.When the claim is exponentially distributed,explicit expressions for the expected discounted dividends until ruin and the Laplace transform of ruin time are also obtained.Finally,the optimal dividend barrier which maximizes the expected discounted dividends until ruin is given.展开更多
In this paper, we consider a compound Poisson risk model with taxes paid according to a loss-carry-forward system and dividends paid under a threshold strategy. First, the closed-form expression of the probability fun...In this paper, we consider a compound Poisson risk model with taxes paid according to a loss-carry-forward system and dividends paid under a threshold strategy. First, the closed-form expression of the probability function for the total number of taxation periods over the lifetime of the surplus process is derived. Second, analytical expression of the expected accumulated discounted dividends paid between two consecutive taxation periods is provided. In addition, explicit expressions are also given for the exponential individual claims.展开更多
In this paper, a hybrid dividend strategy in the compound Poisson risk model is considered. In the absence of dividends, the surplus of an insurance company is modelled by a compound Poisson process. Dividends are pai...In this paper, a hybrid dividend strategy in the compound Poisson risk model is considered. In the absence of dividends, the surplus of an insurance company is modelled by a compound Poisson process. Dividends are paid at a constant rate whenever the modified surplus is in a interval;the premium income no longer goes into the surplus but is paid out as dividends whenever the modified surplus exceeds the upper bound of the interval, otherwise no dividends are paid. Integro-differential equations with boundary conditions satisfied by the expected total discounted dividends until ruin are derived;for example, closed-form solutions are given when claims are exponentially distributed. Accordingly, the moments and moment-generating functions of total discounted dividends until ruin are considered. Finally, the Gerber-Shiu function and Laplace transform of the ruin time are discussed.展开更多
In this note we study the optimal dividend problem for a company whose surplus process, in the absence of dividend payments, evolves as a generalized compound Poisson model in which the counting process is a generaliz...In this note we study the optimal dividend problem for a company whose surplus process, in the absence of dividend payments, evolves as a generalized compound Poisson model in which the counting process is a generalized Poisson process. This model includes the classical risk model and the Pólya-Aeppli risk model as special cases. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. We show that under some conditions the optimal dividend strategy is formed by a barrier strategy. Moreover, two conjectures are proposed.展开更多
Compound Poisson risk model has been simulated. It has started with exponential claim sizes. The simulations have checked for infinite ruin probabilities. An appropriate time window has been chosen to estimate and com...Compound Poisson risk model has been simulated. It has started with exponential claim sizes. The simulations have checked for infinite ruin probabilities. An appropriate time window has been chosen to estimate and compare ruin probabilities. The infinite ruin probabilities of two-compound Poisson risk process have estimated and compared them with standard theoretical results.展开更多
In this paper we consider the Markov-dependent risk model with tax payments in which the claim occurrence, the claim amount as well as the tax rate are controlled by an irreducible discrete-time Markov chain. Systems ...In this paper we consider the Markov-dependent risk model with tax payments in which the claim occurrence, the claim amount as well as the tax rate are controlled by an irreducible discrete-time Markov chain. Systems of integro-differential equations satisfied by the expected discounted tax payments and the non-ruin probability in terms of the ruin probabilities under the Markov-dependent risk model without tax are established. The analytical solutions of the systems of integro-differential equations are also obtained by the iteration method.展开更多
We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same wa...We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same way. We derive the Laplace transform for the first passage time to surplus zero from a given negative surplus and for the duration of negative surplus. Closed-form expressions are given in the case of exponential individual claim. Finally, numerical results are provided to show how to estimate the moments of duration of negative surplus.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.11371321the Key Research Base for Humanities and Social Sciences of Zhejiang Provincial High Education Talents(Statistics of Zhejiang Gongshang University)
文摘This paper considers the dividend problems in the perturbed compound Poisson risk model.Assume that dividends can only be paid at the observation time when the surplus exceeds the barrier level and the excess is paid as dividend.In this paper,integro-differential equations for the expected discounted dividends until ruin and the Laplace transform of ruin time are firstly derived.When the claim is exponentially distributed,explicit expressions for the expected discounted dividends until ruin and the Laplace transform of ruin time are also obtained.Finally,the optimal dividend barrier which maximizes the expected discounted dividends until ruin is given.
基金Supported in part by the National Natural Science Foundation of China, the Guangdong Natural Science Foundation (S2011010004511)the Fundamental Research Funds for the Central Universities of China (201120102020005)
文摘In this paper, we consider a compound Poisson risk model with taxes paid according to a loss-carry-forward system and dividends paid under a threshold strategy. First, the closed-form expression of the probability function for the total number of taxation periods over the lifetime of the surplus process is derived. Second, analytical expression of the expected accumulated discounted dividends paid between two consecutive taxation periods is provided. In addition, explicit expressions are also given for the exponential individual claims.
文摘In this paper, a hybrid dividend strategy in the compound Poisson risk model is considered. In the absence of dividends, the surplus of an insurance company is modelled by a compound Poisson process. Dividends are paid at a constant rate whenever the modified surplus is in a interval;the premium income no longer goes into the surplus but is paid out as dividends whenever the modified surplus exceeds the upper bound of the interval, otherwise no dividends are paid. Integro-differential equations with boundary conditions satisfied by the expected total discounted dividends until ruin are derived;for example, closed-form solutions are given when claims are exponentially distributed. Accordingly, the moments and moment-generating functions of total discounted dividends until ruin are considered. Finally, the Gerber-Shiu function and Laplace transform of the ruin time are discussed.
文摘In this note we study the optimal dividend problem for a company whose surplus process, in the absence of dividend payments, evolves as a generalized compound Poisson model in which the counting process is a generalized Poisson process. This model includes the classical risk model and the Pólya-Aeppli risk model as special cases. The objective is to find a dividend policy so as to maximize the expected discounted value of dividends which are paid to the shareholders until the company is ruined. We show that under some conditions the optimal dividend strategy is formed by a barrier strategy. Moreover, two conjectures are proposed.
文摘Compound Poisson risk model has been simulated. It has started with exponential claim sizes. The simulations have checked for infinite ruin probabilities. An appropriate time window has been chosen to estimate and compare ruin probabilities. The infinite ruin probabilities of two-compound Poisson risk process have estimated and compared them with standard theoretical results.
基金Supported by the National Natural Science Foundation of China(11401498)the Fundamental Research Funds for the Central Universities(WUT:2015IVA066)
文摘In this paper we consider the Markov-dependent risk model with tax payments in which the claim occurrence, the claim amount as well as the tax rate are controlled by an irreducible discrete-time Markov chain. Systems of integro-differential equations satisfied by the expected discounted tax payments and the non-ruin probability in terms of the ruin probabilities under the Markov-dependent risk model without tax are established. The analytical solutions of the systems of integro-differential equations are also obtained by the iteration method.
基金Supported in part by the National Natural Science Foundation of China and the Ministry of Education of China
文摘We consider a continuous time risk model based on a two state Markov process, in which after an exponentially distributed time, the claim frequency changes to a different level and can change back again in the same way. We derive the Laplace transform for the first passage time to surplus zero from a given negative surplus and for the duration of negative surplus. Closed-form expressions are given in the case of exponential individual claim. Finally, numerical results are provided to show how to estimate the moments of duration of negative surplus.