Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical pr...Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro? software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.展开更多
This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production proc...This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production processes of various industrial products and to sustain waste management of these industries.In this study,different amounts of blast furnace dust(BFD),which is the major iron-steel industry waste and is used as filler for recycled low-density polyethylene(LDPE),was mixed with LDPE to produce the composite material.The morphology,mechanical,vicat softening temperature thermal conductivity,hardness and wear resistance properties of BFD filled LDPE composites were assessed.The increasing of BFD in recycled LDPE improved the heat resistance,increased thermal conductivity and wear resistance of composite materials.In addition,it was found that the composite materials had sufficient mechanical properties,when mechanical tests were evaluated.These results showed that the produced composite material could be used in buildings as a floor coating material and thereby saving raw materials and resources,as well as potentially reducing environmental problems.展开更多
On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is...On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is developed, and the creep contitutive equations are deduced. The visco-elastoplastic model is proved by the experiments and practice.展开更多
基金the Coordinación de la Investigación Científica(CIC)of the Universidad Michoacana de San Nicolás de Hidalgo(UMSNH-México)for the support during this project(CIC-UMSNH-1.8)sponsored by the National Council on Science and Technology(Consejo Nacional de Ciencia y Tecnología-México)and would like to thank for the support during this project N.B.254928
文摘Five advanced high-strength transformation-induced plasticity(TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro? software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.
基金funded by Gazi University Scientific Research Center(Contract No.48/2013-01).
文摘This study focused on developing a sustainable composite material using metallic wastes of the iron-steel industry and plastic wastes of the plastic industry in order to reduce resultant waste from the production processes of various industrial products and to sustain waste management of these industries.In this study,different amounts of blast furnace dust(BFD),which is the major iron-steel industry waste and is used as filler for recycled low-density polyethylene(LDPE),was mixed with LDPE to produce the composite material.The morphology,mechanical,vicat softening temperature thermal conductivity,hardness and wear resistance properties of BFD filled LDPE composites were assessed.The increasing of BFD in recycled LDPE improved the heat resistance,increased thermal conductivity and wear resistance of composite materials.In addition,it was found that the composite materials had sufficient mechanical properties,when mechanical tests were evaluated.These results showed that the produced composite material could be used in buildings as a floor coating material and thereby saving raw materials and resources,as well as potentially reducing environmental problems.
文摘On the basis of the creep test of bigh-water materisl solidifying backfill body(abb. HW body), This paper discusses its creep properties- The visco-elasto-plastic model, which shows the creep properties of HW body, is developed, and the creep contitutive equations are deduced. The visco-elastoplastic model is proved by the experiments and practice.