This paper conducts a comparative analysis of the anti-wetting properties and degassing performance of both homemade and commercial membranes.Additionally,it introduces a unique approach to hydrophobic modification of...This paper conducts a comparative analysis of the anti-wetting properties and degassing performance of both homemade and commercial membranes.Additionally,it introduces a unique approach to hydrophobic modification of high-flux membranes.The study involved the utilization of Hyflon AD40L for multiple coatings on the surface of polypropylene(PP)hollow fiber membranes.Several variables,including modification solution concentration,temperature,coating duration,number of coating cycles,polymer type,and the choice and concentration of the pore-blocking agent,were systematically investigated to establish the optimal modification process.Characterization of the modified membrane and degassing experiments revealed significant improvements.Specifically,the contact angle increased from 95.5°to 113.1°,while the trans-membrane differential pressure surged from 10.7 kPa to 154.6 kPa,marking a remarkable 14.4-fold enhancement.This enhancement is attributed to the improved antiwetting capabilities of the modified membrane.In the degassing experiments,the modified membrane-based module demonstrated an impressive 95.0%dissolved oxygen removal rate,with a corresponding mass transfer coefficient reaching 18.01×10^(-3)m·h^(-1).These results underscore the substantial potential of the Hyflon AD40 L/PP membrane for applications in membrane degassing.展开更多
Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and field em...Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and field emission scanning electron microscope (FE- SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.展开更多
Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,Ndimethylamino ethyl methacrylate (DMAEMA). Structura...Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,Ndimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.展开更多
Surface modification by physical adsorption of a series of non-ionic surfactants including Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85, was accomplished on polypropylene microporous hollow fiber and flat membr...Surface modification by physical adsorption of a series of non-ionic surfactants including Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85, was accomplished on polypropylene microporous hollow fiber and flat membranes. The adsorption curve of the membrane surface was analyzed by weight measurements and the typical results showed a twoplatform character similarly. Differences in the degree and curve shape of adsorption resulting from such factors as concentration, temperature, as well as water cleaning time were observed for Tween 85 among other Tweens. Attenuated total reflection - Fourier transform infrared spectroscopy analysis and field emission scanning electron microscopy observation showed that the adsorption of Tween on polypropylene microporous membrane (PPMM) is effective and occurs mainly in the pores of PPMMs at low adsorption amount, and on the membrane surface also at high adsorption value.展开更多
Membrane surfaces modified with poly(N-vinyl-2-pyrrolidone) (PNVP) can be endowed with hydrophilicity, biocompatibility and functionality. In this work, atmospheric pressure dielectric barrier discharge plasma gra...Membrane surfaces modified with poly(N-vinyl-2-pyrrolidone) (PNVP) can be endowed with hydrophilicity, biocompatibility and functionality. In this work, atmospheric pressure dielectric barrier discharge plasma graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto polypropylene (PP) microporous membrane surface was studied. The experimental results reveal that plasma treatment conditions, such as discharge power, treatment time and adsorbed NVP amount, have remarkable effects on the grafting degree of NVP. Structural and morphological changes on the membrane surfaces were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Water contact angles on the membrane surfaces decrease with the increase of NVP grafting degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of grafting degrees on pure water fluxes were also measured. It is shown that pure water fluxes increase with grafting degree firstly and then decrease adversely. Finally, filtration of bovine serum albumin (BSA) solution and platelets adhesion of the PNVP modified membranes show good protein resistance and potential biocompatibility due to the enhancement of surface hydrophilicity.展开更多
Two kinds of polypeptides were tethered onto the surface of polypropylene microporous membrane (PPMM) through a ring opening polymerization of L-glutamate N-carboxyanhydride initiated by amino groups which were intr...Two kinds of polypeptides were tethered onto the surface of polypropylene microporous membrane (PPMM) through a ring opening polymerization of L-glutamate N-carboxyanhydride initiated by amino groups which were introduced by ammonia plasma and y-aminopropyl triethanoxysilane treatments. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR), scanning electron microscopy (SEM), together with water contact angle measurements were used to characterize the modified membranes. XPS analyses and FT-IR/ATR spectra demonstrated that polypeptides are actually grafted onto the membrane surface. The wettability of the membrane surface increases at first and then decreases with the increase in grafting degrees of polypeptide. Platelet adhesion and murine macrophage attachment experiments reveal an enhanced hemocompatibility for the polypeptide modified PPMMs. All these results give evidence that polypeptide grafting can simultaneously improve the hemocompatibility as well as reserve the hydrophobicity for the membrane, which will provide a potential approach to improve the performance of polypropylene hollow fiber microporous membrane used in artificial oxygenator.展开更多
Surface modification of microporous polypropylene hollow fiber membranes was performed by radical-induced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA). The influences of temperature, monomer co...Surface modification of microporous polypropylene hollow fiber membranes was performed by radical-induced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA). The influences of temperature, monomer concentration and pre-adsorbed amount of benzoyl peroxide on grafting degree were studied respectively. It was found that the appropriate graft temperature was 75 'C, at which the grafting degree was the highest and the hydrolytic decomposition of DMAEMA the lowest. Scanning electron photomicrography and the average pore diameters of the modified membranes demonstrated that part of the micropores on the membrane surface was plugged by the grafted polyDMAEMA chains, especially at high grafting degree. Contact angle and water swelling experiments showed that a moderate grafting degree could improve the hydrophilicity of the membranes. In the range of 11.3%-12.0% grafting degree, the water swelling percentage reached its maximum (51.1%) and the contact angle reached its minimum (74 degrees). The bovine serum albumin (BSA) adsorption experiment indicated that the grafted polyDMAEMA had a dual effect on protein adsorption. At the first stage, the BSA adsorption decreased with increasing of DMAEMA grafting degree. As the interaction between BSA and polyDMAEMA on membrane surface increased, the BSA adsorption increased with increasing of DMAEMA grafting degree.展开更多
Porous materials with selective wettability and permeability have significant importance in oil-water separation,but complex fabrication processes are typically required to obtain the desired structures with suitable ...Porous materials with selective wettability and permeability have significant importance in oil-water separation,but complex fabrication processes are typically required to obtain the desired structures with suitable surface chemistry.In this work,an industrial melt-blown strategy that utilized commercially available polypropylene(PP)was used for the large-scale fabrication of superhydrophobic/superoleophilic membranes with staggered fabric structures.These membranes could readily separate different oils including pump oil and crude oil from various aqueous solutions such as strongly acidic,alkaline,and saline media.In addition,the separation efficiencies of these membranes exceeded 99%,and they could remain functional even after exposure to corrosive media.We anticipate that this work will further the design of membranes and enhance their applicability in oil-water separation,and provide researchers and engineers with a more effective tool for performing challenging separations and mitigating pollution.展开更多
A glycopolymer bearing glucose residues was tethered onto the surface of polypropylene microporous membrane by UV-induced graft polymerization ofα-allyl glucoside.Concanavalin A (Con A),a glucose recognizing lectin,c...A glycopolymer bearing glucose residues was tethered onto the surface of polypropylene microporous membrane by UV-induced graft polymerization ofα-allyl glucoside.Concanavalin A (Con A),a glucose recognizing lectin,could be specifically adsorbed to the membrane surface.On the other hand,the membrane surface showed no recognition ability to another lectin peanut agglutinin.Moreover,the recognition complex between the glycosylated membrane surface and Con A could be inhibited by glucose and mannose solution.T...展开更多
To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the...To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the plasma-induced immobilization of poly (N-vinyl-2-pyrrolidone) (PVP) and the plasma treatment with different gases respectively. Attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Water contact angle was measured by the sessile drop method. It was found that the water contact angle was 128.8, 72.3, 62.7, 74.4, 79.1, 86.3, and 71.3° for the nascent, PVP-immobilized, air, 02, Ar, CO2 and H2O plasma treated PPHFMM, respectively. The SMBR was operated at fixed transmembrane pressure to determine the limiting flux for the PPHFMM before and after surface modification. Results showed that the limiting flux appeared to be 103, 159, 117, 133, 136, 121 and 152 L/(m^2· h) for the nascent, PVP-immobilized, air, O2, At, CO2 and H2O plasma treated PPHFMM, respectively. After continuous operation for about 50 h in the SMBR, the antifouling characteristics were improved to some extent.展开更多
Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, ...Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition.展开更多
Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work] was investigated. It was found that both the distance of t...Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work] was investigated. It was found that both the distance of the membrane from the Ar plasma center and the plasma power had a strong influence on the surface modification, hydrophilieity and graft yield (GY) of the treated membrane. Results suggest that remote plasma treatment with a proper sample position, plasma power and graft polymerization leads to a membrane surface with not only less damage, but also more permanent hydrophilicity, than direct plasma treatment does. By analyzing the morphology and the chemical composition of the membrane surface by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), as well as Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) respectively, a possible mechanism was tentatively revealed.展开更多
Sulfonated polypropylene membranes loaded with different kinds of counter-ions were prepared by heterogeneous chiorosulfonation reaction of polypropylene membrane followed by hydrolysis and ion-exchange reaction. The ...Sulfonated polypropylene membranes loaded with different kinds of counter-ions were prepared by heterogeneous chiorosulfonation reaction of polypropylene membrane followed by hydrolysis and ion-exchange reaction. The membranes obtained were used for selective separation of ethanol/water mixtures by pervaporation. The effects of counter-ion species, ion-exchange capacity, solution composition, thickness of membrane and temperature on the separation behavior of the membranes were investigated. Microstructure and morphology of the membranes were examined by X-ray and SEM as well.展开更多
Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy...Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy (XPS) and ultra-violet (UV) spectra demonstrated the success of grafting amino groups. The density of the polar amino groups on the membrane surface is about 0.59 μmol/cm2. The as-treated membranes were successively applied to the in situ synthesis of oligonucleotides and an average coupling yield was more than 98%. The surface feature of the treated membrane is suggested to be responsible for its advantage over a glass slide.展开更多
Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between bo...Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between boric acid and saccharide polyols.A photoinduced grafting-chemical reaction sequence was used to prepare these affinity membranes.Poly(2-aminoethyl methacrylate hydrochloride)[poly(AEMA)]was grafted on the surfaces of MPPM by UV-induced graft polymerization.Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with confocal laser scanning microscopy.It is concluded that lactose ligands can be covalently immobilized on the external surface and in the pores by the subsequent coupling of poly(AEMA)with lactobionic acid(LA).Physical and chemical properties of the affinity membranes were characterized by field emission scanning electron microscopy and Fourier Transform Infrared/Attenuated Total Refraction spectroscopy(FT-IR/ATR).3-Aminophenyl boric acid(3-APBA)was removed from aqueous solution by a single piece of lactose-functionalized MPPM in a dynamic filtration system.The results show that the 3-APBA removal reaches an optimal efficiency(39.5%)under the alkaline condition(pH9.1),which can be improved by increasing the immobilization density of LA.Regeneration of these affinity membranes can be easily realized through acid-base washing because the complexation of boric acid and saccharide polyol is reversible.展开更多
To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypr...To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypropylene(PP)separators,respectively.Critical parameters for separator properties,such as the thermal shrinkage rate,porosity,wettability,and mechanical strength,are evaluated on the plasma treated PP membranes.O_2 plasma treatment is found to remarkably improve the wettability,porosity and electrolyte uptake.PECVD SiO_x-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity.The electrolyte-philicity of the Si Ox-like coating surface can be tuned by the varying O_2 content in the gas mixture during the deposition.Though still acceptable,the mechanical strength is reduced after PECVD,which is due to the plasma etching.展开更多
Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent...Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent.展开更多
In order to improve the dimensional stability of wood-polymer composites, wood flour pre-treated by polyethylene glycol (PEG) at two different concentrations and then thermally treated at 140℃, was used as raw mate...In order to improve the dimensional stability of wood-polymer composites, wood flour pre-treated by polyethylene glycol (PEG) at two different concentrations and then thermally treated at 140℃, was used as raw material to produce wood flour/poly- propylene (PP) composites at a wood content of 40%. The structure of modified wood flour was analyzed with a scanning electron microscope (SEM) and its effect on the physical and mechanical properties of wood flour/PP composites was evaluated. The SEM results indicated the "bulking" effect of PEG on wood flour, which resulted in reduced water uptake. The combination of PEG and heat treatment further improved the moisture resistance of the composites. However, PEG modification had a negative effect on the flexural modulus of rupture (MOR) and the modulus of elasticity (MOE); whereas heat treatment partly compensated for this reduc- tion. For dynamic mechanical properties, PEG treatment decreased the storage modulus (E'). However, the heat treatment resulted in an increase orE' of the wood flour/PP composites, with the temperature of loss factor peaks shifting to a higher temperature.展开更多
In the present work, the TIPS behavior of isotactic polypropylene(iP P)/di-n-butyl phthalate(DBP)/dioctyl phthalate(DOP)/nano-SiO_2 system and the competition relation between liquid–liquid phase separation and polym...In the present work, the TIPS behavior of isotactic polypropylene(iP P)/di-n-butyl phthalate(DBP)/dioctyl phthalate(DOP)/nano-SiO_2 system and the competition relation between liquid–liquid phase separation and polymer crystallization are successfully adjusted by adding nano-SiO_2. The liquid–liquid phase separation temperature of the system increases with increasing nano-SiO_2 content. Besides, iP P crystallization temperature is also changed after adding nano-SiO_2. IPP/nano-SiO_2 blend hollow fiber microporous membrane is prepared via TIPS method. SEM photos show that the membrane exhibits mixed morphology combining cellular structure relating to liquid–liquid phase separation and branch structure originating from polymer crystallization. The relative weight of cellular structure first decreases and then increases with the increase of nano-SiO_2 content. Furthermore, porosity, connectivity among pores and pure water flux of the membrane first increase and then decrease with increasing nano-SiO_2 content. However, mechanical performance of the membrane is improved at all times with increasing nano-SiO_2 content.展开更多
基金financial support of the National Key Research and Development Program of China(2020YFC0862903)the National Natural Science Foundation of China(22078146)+2 种基金the Key Research and Development program of Jiangsu Province(BE2021022)the Materials-Oriented Chemical Engineering State Key Laboratory Program(KL19-04)the Natural Science Foundation of Jiangsu Province(BK20200091).
文摘This paper conducts a comparative analysis of the anti-wetting properties and degassing performance of both homemade and commercial membranes.Additionally,it introduces a unique approach to hydrophobic modification of high-flux membranes.The study involved the utilization of Hyflon AD40L for multiple coatings on the surface of polypropylene(PP)hollow fiber membranes.Several variables,including modification solution concentration,temperature,coating duration,number of coating cycles,polymer type,and the choice and concentration of the pore-blocking agent,were systematically investigated to establish the optimal modification process.Characterization of the modified membrane and degassing experiments revealed significant improvements.Specifically,the contact angle increased from 95.5°to 113.1°,while the trans-membrane differential pressure surged from 10.7 kPa to 154.6 kPa,marking a remarkable 14.4-fold enhancement.This enhancement is attributed to the improved antiwetting capabilities of the modified membrane.In the degassing experiments,the modified membrane-based module demonstrated an impressive 95.0%dissolved oxygen removal rate,with a corresponding mass transfer coefficient reaching 18.01×10^(-3)m·h^(-1).These results underscore the substantial potential of the Hyflon AD40 L/PP membrane for applications in membrane degassing.
基金Project supported by the High-Tech Research and Development Program (863)of China(No.2002AA601230)the Science-Research Program of Jiaxing City,China(No.2005AY3013).
文摘Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and field emission scanning electron microscope (FE- SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.
文摘Surface modification of polypropylene microporous membrane (PPMM) was performed by atmospheric pressure dielectric barrier discharge plasma immobilization of N,Ndimethylamino ethyl methacrylate (DMAEMA). Structural and morphological changes on the membrane surface were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Results reveal that both the plasma-treating conditions and the adsorbed DMAEMA amount have remarkable effects on the immobilization degree of DMAEMA. Peroxide determination by 1,1-diphenyl-2-picrvlhydrazyl (DPPH) method verifies the exsistence of radicals induced by plasma, which activize the immobilization reaction. Pure water contact angle on the membrane surface decreased with the increase of DMAEMA immobilization degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of immobilization degrees on pure water fluxes were also measured. It is shown that pure water fluxes first increased with immobilization degree and then decreased. Finally, permeation of bovine serum albumin (BSA) and lysozyme solution were measured to evaluate the antifouling property of the DMAEMA-modified membranes, from which it is shown that both hydrophilicity and electrostatic repulsion are beneficial for membrane antifouling.
基金This work was financially supported by the High-Tech Research and Development Program of China (No. 2002AA601230) the Science-Research Program of Jiaxing city, China (No. 2005AY3013).
文摘Surface modification by physical adsorption of a series of non-ionic surfactants including Tween 20, Tween 40, Tween 60, Tween 80 and Tween 85, was accomplished on polypropylene microporous hollow fiber and flat membranes. The adsorption curve of the membrane surface was analyzed by weight measurements and the typical results showed a twoplatform character similarly. Differences in the degree and curve shape of adsorption resulting from such factors as concentration, temperature, as well as water cleaning time were observed for Tween 85 among other Tweens. Attenuated total reflection - Fourier transform infrared spectroscopy analysis and field emission scanning electron microscopy observation showed that the adsorption of Tween on polypropylene microporous membrane (PPMM) is effective and occurs mainly in the pores of PPMMs at low adsorption amount, and on the membrane surface also at high adsorption value.
基金Funded by the Foundation for University Young Key Teacher by Zhejiang Province
文摘Membrane surfaces modified with poly(N-vinyl-2-pyrrolidone) (PNVP) can be endowed with hydrophilicity, biocompatibility and functionality. In this work, atmospheric pressure dielectric barrier discharge plasma graft polymerization of N-vinyl-2-pyrrolidone (NVP) onto polypropylene (PP) microporous membrane surface was studied. The experimental results reveal that plasma treatment conditions, such as discharge power, treatment time and adsorbed NVP amount, have remarkable effects on the grafting degree of NVP. Structural and morphological changes on the membrane surfaces were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscope (XPS) and field emission scanning electron microscopy (FE-SEM). Water contact angles of the membrane surfaces were also measured by the sessile drop method. Water contact angles on the membrane surfaces decrease with the increase of NVP grafting degree, which indicates an enhanced hydrophilicity for the modified membranes. The effects of grafting degrees on pure water fluxes were also measured. It is shown that pure water fluxes increase with grafting degree firstly and then decrease adversely. Finally, filtration of bovine serum albumin (BSA) solution and platelets adhesion of the PNVP modified membranes show good protein resistance and potential biocompatibility due to the enhancement of surface hydrophilicity.
基金This project was supported by the National Natural Science Foundation of China (No. 20074033)the National Basic Research Program of China (No. 2003CB15705).
文摘Two kinds of polypeptides were tethered onto the surface of polypropylene microporous membrane (PPMM) through a ring opening polymerization of L-glutamate N-carboxyanhydride initiated by amino groups which were introduced by ammonia plasma and y-aminopropyl triethanoxysilane treatments. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR), scanning electron microscopy (SEM), together with water contact angle measurements were used to characterize the modified membranes. XPS analyses and FT-IR/ATR spectra demonstrated that polypeptides are actually grafted onto the membrane surface. The wettability of the membrane surface increases at first and then decreases with the increase in grafting degrees of polypeptide. Platelet adhesion and murine macrophage attachment experiments reveal an enhanced hemocompatibility for the polypeptide modified PPMMs. All these results give evidence that polypeptide grafting can simultaneously improve the hemocompatibility as well as reserve the hydrophobicity for the membrane, which will provide a potential approach to improve the performance of polypropylene hollow fiber microporous membrane used in artificial oxygenator.
基金The work was supported by the National Natural Science Foundation of China (Grant No. 20074033) and the High-TechResearch and Development Program of China (Grant no. 2002AA601230).
文摘Surface modification of microporous polypropylene hollow fiber membranes was performed by radical-induced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA). The influences of temperature, monomer concentration and pre-adsorbed amount of benzoyl peroxide on grafting degree were studied respectively. It was found that the appropriate graft temperature was 75 'C, at which the grafting degree was the highest and the hydrolytic decomposition of DMAEMA the lowest. Scanning electron photomicrography and the average pore diameters of the modified membranes demonstrated that part of the micropores on the membrane surface was plugged by the grafted polyDMAEMA chains, especially at high grafting degree. Contact angle and water swelling experiments showed that a moderate grafting degree could improve the hydrophilicity of the membranes. In the range of 11.3%-12.0% grafting degree, the water swelling percentage reached its maximum (51.1%) and the contact angle reached its minimum (74 degrees). The bovine serum albumin (BSA) adsorption experiment indicated that the grafted polyDMAEMA had a dual effect on protein adsorption. At the first stage, the BSA adsorption decreased with increasing of DMAEMA grafting degree. As the interaction between BSA and polyDMAEMA on membrane surface increased, the BSA adsorption increased with increasing of DMAEMA grafting degree.
基金the National Natural Science Foundations of China(Nos.21878059,21878058,21808044)the Science and Technology Project of Guangdong Province(2017A050501040)the Science and Technology Project of the Guangzhou Education Bureau(201831830,201831825)for sponsoring this research。
文摘Porous materials with selective wettability and permeability have significant importance in oil-water separation,but complex fabrication processes are typically required to obtain the desired structures with suitable surface chemistry.In this work,an industrial melt-blown strategy that utilized commercially available polypropylene(PP)was used for the large-scale fabrication of superhydrophobic/superoleophilic membranes with staggered fabric structures.These membranes could readily separate different oils including pump oil and crude oil from various aqueous solutions such as strongly acidic,alkaline,and saline media.In addition,the separation efficiencies of these membranes exceeded 99%,and they could remain functional even after exposure to corrosive media.We anticipate that this work will further the design of membranes and enhance their applicability in oil-water separation,and provide researchers and engineers with a more effective tool for performing challenging separations and mitigating pollution.
基金the National Natural Science Foundation of China (No.20474054)the National Natural Science Foundation of China for Distinguished Young Scholars (No.50625309).
文摘A glycopolymer bearing glucose residues was tethered onto the surface of polypropylene microporous membrane by UV-induced graft polymerization ofα-allyl glucoside.Concanavalin A (Con A),a glucose recognizing lectin,could be specifically adsorbed to the membrane surface.On the other hand,the membrane surface showed no recognition ability to another lectin peanut agglutinin.Moreover,the recognition complex between the glycosylated membrane surface and Con A could be inhibited by glucose and mannose solution.T...
基金The Hi-Tech Research and Development Program (863) of China (No. 2002AA601230)
文摘To improve its limiting flux and antifouling characteristics in a submerged membrane-bioreactor (SMBR) for wastewater treatment, polypropylene hollow fiber microporous membrane (PPHFMM) was surface-modified by the plasma-induced immobilization of poly (N-vinyl-2-pyrrolidone) (PVP) and the plasma treatment with different gases respectively. Attenuated total reflection-Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM) were used to characterize the structural and morphological changes on the membrane surface. Water contact angle was measured by the sessile drop method. It was found that the water contact angle was 128.8, 72.3, 62.7, 74.4, 79.1, 86.3, and 71.3° for the nascent, PVP-immobilized, air, 02, Ar, CO2 and H2O plasma treated PPHFMM, respectively. The SMBR was operated at fixed transmembrane pressure to determine the limiting flux for the PPHFMM before and after surface modification. Results showed that the limiting flux appeared to be 103, 159, 117, 133, 136, 121 and 152 L/(m^2· h) for the nascent, PVP-immobilized, air, O2, At, CO2 and H2O plasma treated PPHFMM, respectively. After continuous operation for about 50 h in the SMBR, the antifouling characteristics were improved to some extent.
基金Supported by the National Basic Research Program of China(2015CB655301)the Natural Science Foundation of Jiangsu Province(BK20150063)+1 种基金the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutionsthe Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition.
文摘Surface modification of polypropylene membrane by argon (Ar) plasma-induced graft polymerization with hydrophilic monomer [acrylic acid (AA) in this work] was investigated. It was found that both the distance of the membrane from the Ar plasma center and the plasma power had a strong influence on the surface modification, hydrophilieity and graft yield (GY) of the treated membrane. Results suggest that remote plasma treatment with a proper sample position, plasma power and graft polymerization leads to a membrane surface with not only less damage, but also more permanent hydrophilicity, than direct plasma treatment does. By analyzing the morphology and the chemical composition of the membrane surface by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), as well as Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) respectively, a possible mechanism was tentatively revealed.
文摘Sulfonated polypropylene membranes loaded with different kinds of counter-ions were prepared by heterogeneous chiorosulfonation reaction of polypropylene membrane followed by hydrolysis and ion-exchange reaction. The membranes obtained were used for selective separation of ethanol/water mixtures by pervaporation. The effects of counter-ion species, ion-exchange capacity, solution composition, thickness of membrane and temperature on the separation behavior of the membranes were investigated. Microstructure and morphology of the membranes were examined by X-ray and SEM as well.
文摘Polypropylene microporous membranes were treated with plasma in a mixture of N2 and H2 (1:2 in volume). Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT1R), X-ray photoelectron spectroscopy (XPS) and ultra-violet (UV) spectra demonstrated the success of grafting amino groups. The density of the polar amino groups on the membrane surface is about 0.59 μmol/cm2. The as-treated membranes were successively applied to the in situ synthesis of oligonucleotides and an average coupling yield was more than 98%. The surface feature of the treated membrane is suggested to be responsible for its advantage over a glass slide.
基金Supported by the National Natural Science Foundation of China(50933006)the National Basic Research Program of China(2009CB623401)
文摘Affinity membranes are fabricated for boric acid removal by the surface functionalization of microporous polypropylene membrane(MPPM)with lactose-based polyols.The affinity is based on specific complexation between boric acid and saccharide polyols.A photoinduced grafting-chemical reaction sequence was used to prepare these affinity membranes.Poly(2-aminoethyl methacrylate hydrochloride)[poly(AEMA)]was grafted on the surfaces of MPPM by UV-induced graft polymerization.Grafting in the membrane pores was visualized by dying the cross-section of poly(AEMA)-grafted MPPM with fluorescein disodium and imaging with confocal laser scanning microscopy.It is concluded that lactose ligands can be covalently immobilized on the external surface and in the pores by the subsequent coupling of poly(AEMA)with lactobionic acid(LA).Physical and chemical properties of the affinity membranes were characterized by field emission scanning electron microscopy and Fourier Transform Infrared/Attenuated Total Refraction spectroscopy(FT-IR/ATR).3-Aminophenyl boric acid(3-APBA)was removed from aqueous solution by a single piece of lactose-functionalized MPPM in a dynamic filtration system.The results show that the 3-APBA removal reaches an optimal efficiency(39.5%)under the alkaline condition(pH9.1),which can be improved by increasing the immobilization density of LA.Regeneration of these affinity membranes can be easily realized through acid-base washing because the complexation of boric acid and saccharide polyol is reversible.
基金supported by National Natural Science Foundation of China(Nos.11175024,11375031)the Beijing Institute of Graphic and Communication Key Project of China(No.23190113051)+2 种基金the Shenzhen Science and Technology Innovation Committee of China(No.JCYJ20130329181509637)BJNSFC(No.KZ201510015014)the State Key Laboratory of Electrical Insulation and Power Equipment of China(No.EIPE15208)
文摘To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypropylene(PP)separators,respectively.Critical parameters for separator properties,such as the thermal shrinkage rate,porosity,wettability,and mechanical strength,are evaluated on the plasma treated PP membranes.O_2 plasma treatment is found to remarkably improve the wettability,porosity and electrolyte uptake.PECVD SiO_x-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity.The electrolyte-philicity of the Si Ox-like coating surface can be tuned by the varying O_2 content in the gas mixture during the deposition.Though still acceptable,the mechanical strength is reduced after PECVD,which is due to the plasma etching.
基金Supported by the National Natural Science Foundation of China (No.20236030).
文摘Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent.
基金supported by the National Natural Science Foundation of China (Grant No.30871966)
文摘In order to improve the dimensional stability of wood-polymer composites, wood flour pre-treated by polyethylene glycol (PEG) at two different concentrations and then thermally treated at 140℃, was used as raw material to produce wood flour/poly- propylene (PP) composites at a wood content of 40%. The structure of modified wood flour was analyzed with a scanning electron microscope (SEM) and its effect on the physical and mechanical properties of wood flour/PP composites was evaluated. The SEM results indicated the "bulking" effect of PEG on wood flour, which resulted in reduced water uptake. The combination of PEG and heat treatment further improved the moisture resistance of the composites. However, PEG modification had a negative effect on the flexural modulus of rupture (MOR) and the modulus of elasticity (MOE); whereas heat treatment partly compensated for this reduc- tion. For dynamic mechanical properties, PEG treatment decreased the storage modulus (E'). However, the heat treatment resulted in an increase orE' of the wood flour/PP composites, with the temperature of loss factor peaks shifting to a higher temperature.
基金Supported by the Key Project of Scientific and Technological Research of Hebei Provincial University(ZD2015107)
文摘In the present work, the TIPS behavior of isotactic polypropylene(iP P)/di-n-butyl phthalate(DBP)/dioctyl phthalate(DOP)/nano-SiO_2 system and the competition relation between liquid–liquid phase separation and polymer crystallization are successfully adjusted by adding nano-SiO_2. The liquid–liquid phase separation temperature of the system increases with increasing nano-SiO_2 content. Besides, iP P crystallization temperature is also changed after adding nano-SiO_2. IPP/nano-SiO_2 blend hollow fiber microporous membrane is prepared via TIPS method. SEM photos show that the membrane exhibits mixed morphology combining cellular structure relating to liquid–liquid phase separation and branch structure originating from polymer crystallization. The relative weight of cellular structure first decreases and then increases with the increase of nano-SiO_2 content. Furthermore, porosity, connectivity among pores and pure water flux of the membrane first increase and then decrease with increasing nano-SiO_2 content. However, mechanical performance of the membrane is improved at all times with increasing nano-SiO_2 content.